IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v88y2024i2d10.1007_s10589-024-00568-6.html
   My bibliography  Save this article

Practical gradient and conjugate gradient methods on flag manifolds

Author

Listed:
  • Xiaojing Zhu

    (Shanghai University of Electric Power)

  • Chungen Shen

    (University of Shanghai for Science and Technology)

Abstract

Flag manifolds, sets of nested sequences of linear subspaces with fixed dimensions, are rising in numerical analysis and statistics. The current optimization algorithms on flag manifolds are based on the exponential map and parallel transport, which are expensive to compute. In this paper we propose practical optimization methods on flag manifolds without the exponential map and parallel transport. Observing that flag manifolds have a similar homogeneous structure with Grassmann and Stiefel manifolds, we generalize some typical retractions and vector transports to flag manifolds, including the Cayley-type retraction and vector transport, the QR-based and polar-based retractions, the projection-type vector transport and the projection of the differentiated polar-based retraction as a vector transport. Theoretical properties and efficient implementations of the proposed retractions and vector transports are discussed. Then we establish Riemannian gradient and Riemannian conjugate gradient algorithms based on these retractions and vector transports. Numerical results on the problem of nonlinear eigenflags demonstrate that our algorithms have a great advantage in efficiency over the existing ones.

Suggested Citation

  • Xiaojing Zhu & Chungen Shen, 2024. "Practical gradient and conjugate gradient methods on flag manifolds," Computational Optimization and Applications, Springer, vol. 88(2), pages 491-524, June.
  • Handle: RePEc:spr:coopap:v:88:y:2024:i:2:d:10.1007_s10589-024-00568-6
    DOI: 10.1007/s10589-024-00568-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-024-00568-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-024-00568-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiaojing Zhu, 2017. "A Riemannian conjugate gradient method for optimization on the Stiefel manifold," Computational Optimization and Applications, Springer, vol. 67(1), pages 73-110, May.
    2. Hiroyuki Sato, 2016. "A Dai–Yuan-type Riemannian conjugate gradient method with the weak Wolfe conditions," Computational Optimization and Applications, Springer, vol. 64(1), pages 101-118, May.
    3. P.-A. Absil & Luca Amodei & Gilles Meyer, 2014. "Two Newton methods on the manifold of fixed-rank matrices endowed with Riemannian quotient geometries," Computational Statistics, Springer, vol. 29(3), pages 569-590, June.
    4. Du Nguyen, 2022. "Closed-form Geodesics and Optimization for Riemannian Logarithms of Stiefel and Flag Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 194(1), pages 142-166, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei Wang & Xin Liu & Yin Zhang, 2023. "A communication-efficient and privacy-aware distributed algorithm for sparse PCA," Computational Optimization and Applications, Springer, vol. 85(3), pages 1033-1072, July.
    2. Hiroyuki Sakai & Hideaki Iiduka, 2021. "Sufficient Descent Riemannian Conjugate Gradient Methods," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 130-150, July.
    3. Yasushi Narushima & Shummin Nakayama & Masashi Takemura & Hiroshi Yabe, 2023. "Memoryless Quasi-Newton Methods Based on the Spectral-Scaling Broyden Family for Riemannian Optimization," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 639-664, May.
    4. Hiroyuki Sakai & Hideaki Iiduka, 2020. "Hybrid Riemannian conjugate gradient methods with global convergence properties," Computational Optimization and Applications, Springer, vol. 77(3), pages 811-830, December.
    5. T. Bittencourt & O. P. Ferreira, 2017. "Kantorovich’s theorem on Newton’s method under majorant condition in Riemannian manifolds," Journal of Global Optimization, Springer, vol. 68(2), pages 387-411, June.
    6. Xiaojing Zhu & Hiroyuki Sato, 2020. "Riemannian conjugate gradient methods with inverse retraction," Computational Optimization and Applications, Springer, vol. 77(3), pages 779-810, December.
    7. Marcio Antônio de A. Bortoloti & Teles A. Fernandes & Orizon P. Ferreira & Jinyun Yuan, 2020. "Damped Newton’s method on Riemannian manifolds," Journal of Global Optimization, Springer, vol. 77(3), pages 643-660, July.
    8. Chen, Kangming & Fukuda, Ellen Hidemi & Sato, Hiroyuki, 2025. "Nonlinear conjugate gradient method for vector optimization on Riemannian manifolds with retraction and vector transport," Applied Mathematics and Computation, Elsevier, vol. 486(C).
    9. Xiaojing Zhu, 2017. "A Riemannian conjugate gradient method for optimization on the Stiefel manifold," Computational Optimization and Applications, Springer, vol. 67(1), pages 73-110, May.
    10. Du Nguyen, 2023. "Operator-Valued Formulas for Riemannian Gradient and Hessian and Families of Tractable Metrics in Riemannian Optimization," Journal of Optimization Theory and Applications, Springer, vol. 198(1), pages 135-164, July.
    11. Hiroyuki Sakai & Hideaki Iiduka, 2024. "Modified Memoryless Spectral-Scaling Broyden Family on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 202(2), pages 834-853, August.
    12. Harry Oviedo, 2023. "Proximal Point Algorithm with Euclidean Distance on the Stiefel Manifold," Mathematics, MDPI, vol. 11(11), pages 1-17, May.
    13. Nickolay Trendafilov & Martin Kleinsteuber & Hui Zou, 2014. "Sparse matrices in data analysis," Computational Statistics, Springer, vol. 29(3), pages 403-405, June.
    14. Sakai, Hiroyuki & Sato, Hiroyuki & Iiduka, Hideaki, 2023. "Global convergence of Hager–Zhang type Riemannian conjugate gradient method," Applied Mathematics and Computation, Elsevier, vol. 441(C).
    15. Zhou Sheng & Gonglin Yuan, 2024. "Convergence and worst-case complexity of adaptive Riemannian trust-region methods for optimization on manifolds," Journal of Global Optimization, Springer, vol. 89(4), pages 949-974, August.
    16. Hiroyuki Sato, 2023. "Riemannian optimization on unit sphere with p-norm and its applications," Computational Optimization and Applications, Springer, vol. 85(3), pages 897-935, July.
    17. Teles A. Fernandes & Orizon P. Ferreira & Jinyun Yuan, 2017. "On the Superlinear Convergence of Newton’s Method on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 173(3), pages 828-843, June.
    18. P.-A. Absil & I. Oseledets, 2015. "Low-rank retractions: a survey and new results," Computational Optimization and Applications, Springer, vol. 62(1), pages 5-29, September.
    19. Ke Wang & Zhuo Chen & Shihui Ying & Xinjian Xu, 2023. "Low-Rank Matrix Completion via QR-Based Retraction on Manifolds," Mathematics, MDPI, vol. 11(5), pages 1-17, February.
    20. Hiroyuki Sato & Kensuke Aihara, 2019. "Cholesky QR-based retraction on the generalized Stiefel manifold," Computational Optimization and Applications, Springer, vol. 72(2), pages 293-308, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:88:y:2024:i:2:d:10.1007_s10589-024-00568-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.