IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v68y2017i2d10.1007_s10898-016-0472-y.html
   My bibliography  Save this article

Kantorovich’s theorem on Newton’s method under majorant condition in Riemannian manifolds

Author

Listed:
  • T. Bittencourt

    (IME/UFG)

  • O. P. Ferreira

    (IME/UFG)

Abstract

Extension of concepts and techniques of linear spaces for the Riemannian setting has been frequently attempted. One reason for the extension of such techniques is the possibility to transform some Euclidean non-convex or quasi-convex problems into Riemannian convex problems. In this paper, a version of Kantorovich’s theorem on Newton’s method for finding a singularity of differentiable vector fields defined on a complete Riemannian manifold is presented. In the presented analysis, the classical Lipschitz condition is relaxed using a general majorant function, which enables us to not only establish the existence and uniqueness of the solution but also unify earlier results related to Newton’s method. Moreover, a ball is prescribed around the points satisfying Kantorovich’s assumptions and convergence of the method is ensured for any starting point within this ball. In addition, some bounds for the Q-quadratic convergence of the method, which depends on the majorant function, are obtained.

Suggested Citation

  • T. Bittencourt & O. P. Ferreira, 2017. "Kantorovich’s theorem on Newton’s method under majorant condition in Riemannian manifolds," Journal of Global Optimization, Springer, vol. 68(2), pages 387-411, June.
  • Handle: RePEc:spr:jglopt:v:68:y:2017:i:2:d:10.1007_s10898-016-0472-y
    DOI: 10.1007/s10898-016-0472-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-016-0472-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-016-0472-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jin-Hua Wang & Jen-Chih Yao & Chong Li, 2012. "Gauss–Newton method for convex composite optimizations on Riemannian manifolds," Journal of Global Optimization, Springer, vol. 53(1), pages 5-28, May.
    2. NESTEROV , Yu. & TODD, Mike, 2002. "On the Riemannian geometry defined by self-concordant barriers and interior-point methods," LIDAM Reprints CORE 1595, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. P.-A. Absil & Luca Amodei & Gilles Meyer, 2014. "Two Newton methods on the manifold of fixed-rank matrices endowed with Riemannian quotient geometries," Computational Statistics, Springer, vol. 29(3), pages 569-590, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Teles A. Fernandes & Orizon P. Ferreira & Jinyun Yuan, 2017. "On the Superlinear Convergence of Newton’s Method on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 173(3), pages 828-843, June.
    2. Nickolay Trendafilov & Martin Kleinsteuber & Hui Zou, 2014. "Sparse matrices in data analysis," Computational Statistics, Springer, vol. 29(3), pages 403-405, June.
    3. J. X. Cruz Neto & O. P. Ferreira & P. R. Oliveira & R. C. M. Silva, 2008. "Central Paths in Semidefinite Programming, Generalized Proximal-Point Method and Cauchy Trajectories in Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 227-242, November.
    4. Bittencourt, Tiberio & Ferreira, Orizon Pereira, 2015. "Local convergence analysis of Inexact Newton method with relative residual error tolerance under majorant condition in Riemannian manifolds," Applied Mathematics and Computation, Elsevier, vol. 261(C), pages 28-38.
    5. Erik Alex Papa Quiroz & Nancy Baygorrea Cusihuallpa & Nelson Maculan, 2020. "Inexact Proximal Point Methods for Multiobjective Quasiconvex Minimization on Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 186(3), pages 879-898, September.
    6. Glaydston Carvalho Bento & Sandro Dimy Barbosa Bitar & João Xavier Cruz Neto & Paulo Roberto Oliveira & João Carlos Oliveira Souza, 2019. "Computing Riemannian Center of Mass on Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 977-992, December.
    7. Glaydston C. Bento & Orizon P. Ferreira & Jefferson G. Melo, 2017. "Iteration-Complexity of Gradient, Subgradient and Proximal Point Methods on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 173(2), pages 548-562, May.
    8. Marcio Antônio de A. Bortoloti & Teles A. Fernandes & Orizon P. Ferreira & Jinyun Yuan, 2020. "Damped Newton’s method on Riemannian manifolds," Journal of Global Optimization, Springer, vol. 77(3), pages 643-660, July.
    9. Orizon P. Ferreira & Mauricio S. Louzeiro & Leandro F. Prudente, 2020. "Iteration-Complexity and Asymptotic Analysis of Steepest Descent Method for Multiobjective Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 507-533, February.
    10. João S. Andrade & Jurandir de O. Lopes & João Carlos de O. Souza, 2023. "An inertial proximal point method for difference of maximal monotone vector fields in Hadamard manifolds," Journal of Global Optimization, Springer, vol. 85(4), pages 941-968, April.
    11. Jean-Baptiste Hiriart-Urruty & Jérôme Malick, 2012. "A Fresh Variational-Analysis Look at the Positive Semidefinite Matrices World," Journal of Optimization Theory and Applications, Springer, vol. 153(3), pages 551-577, June.
    12. E. A. Papa Quiroz & P. R. Oliveira, 2007. "New Self-Concordant Barrier for the Hypercube," Journal of Optimization Theory and Applications, Springer, vol. 135(3), pages 475-490, December.
    13. G. C. Bento & J. X. Cruz Neto, 2013. "A Subgradient Method for Multiobjective Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 159(1), pages 125-137, October.
    14. Edvaldo E. A. Batista & Glaydston de Carvalho Bento & Orizon P. Ferreira, 2016. "Enlargement of Monotone Vector Fields and an Inexact Proximal Point Method for Variational Inequalities in Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 170(3), pages 916-931, September.
    15. Patrick M Wensing & Jean-Jacques Slotine, 2020. "Beyond convexity—Contraction and global convergence of gradient descent," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-29, August.
    16. P.-A. Absil & I. Oseledets, 2015. "Low-rank retractions: a survey and new results," Computational Optimization and Applications, Springer, vol. 62(1), pages 5-29, September.
    17. Petre Birtea & Dan Comănescu, 2017. "Newton Algorithm on Constraint Manifolds and the 5-Electron Thomson Problem," Journal of Optimization Theory and Applications, Springer, vol. 173(2), pages 563-583, May.
    18. Gregório, R.M. & Oliveira, P.R. & Alves, C.D.S., 2019. "A two-phase-like proximal point algorithm in domains of positivity," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 67-89.
    19. NESTEROV, Yurii & NEMIROVSKI, Arkadi, 2003. "Central path and Riemannian distances," LIDAM Discussion Papers CORE 2003051, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    20. Maxim Raginsky & Angelia Nedić, 2016. "Online Discrete Optimization in Social Networks in the Presence of Knightian Uncertainty," Operations Research, INFORMS, vol. 64(3), pages 662-679, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:68:y:2017:i:2:d:10.1007_s10898-016-0472-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.