IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v84y2022i4d10.1007_s10898-022-01189-1.html
   My bibliography  Save this article

A genetic algorithm with a self-reproduction operator to solve systems of nonlinear equations

Author

Listed:
  • William La Cruz

    (Universidad Central de Venezuela)

Abstract

A genetic algorithm for solving systems of nonlinear equations that uses a self-reproduction operator bases on residual approaches is presented and analyzed. To ensure convergence the elitist model is used. A convergence analysis is given. With the aim of showing the advantages of the proposed genetic algorithm an extensive set of numerical experiments with standard test problems and some specific applications are reported.

Suggested Citation

  • William La Cruz, 2022. "A genetic algorithm with a self-reproduction operator to solve systems of nonlinear equations," Journal of Global Optimization, Springer, vol. 84(4), pages 1005-1032, December.
  • Handle: RePEc:spr:jglopt:v:84:y:2022:i:4:d:10.1007_s10898-022-01189-1
    DOI: 10.1007/s10898-022-01189-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-022-01189-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-022-01189-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Haishan Feng & Tingting Li, 2020. "An Accelerated Conjugate Gradient Algorithm for Solving Nonlinear Monotone Equations and Image Restoration Problems," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-12, October.
    2. L. Xiao & S. Boyd, 2006. "Optimal Scaling of a Gradient Method for Distributed Resource Allocation," Journal of Optimization Theory and Applications, Springer, vol. 129(3), pages 469-488, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ion Necoara & Yurii Nesterov & François Glineur, 2017. "Random Block Coordinate Descent Methods for Linearly Constrained Optimization over Networks," Journal of Optimization Theory and Applications, Springer, vol. 173(1), pages 227-254, April.
    2. Hua Han & Lang Li & Lina Wang & Mei Su & Yue Zhao & Josep M. Guerrero, 2017. "A Novel Decentralized Economic Operation in Islanded AC Microgrids," Energies, MDPI, vol. 10(6), pages 1-18, June.
    3. Huang, Lei & Sun, Wei & Li, Qiyue & Li, Weitao, 2023. "Distributed real-time economic dispatch for islanded microgrids with dynamic power demand," Applied Energy, Elsevier, vol. 342(C).
    4. Yajie Jiang & Siyuan Cheng & Haoze Wang, 2023. "Distributed Integral Convex Optimization-Based Current Control for Power Loss Optimization in Direct Current Microgrids," Energies, MDPI, vol. 16(24), pages 1-17, December.
    5. Hongsheng Liu & Shu Lu, 2019. "Convergence of the augmented decomposition algorithm," Computational Optimization and Applications, Springer, vol. 72(1), pages 179-213, January.
    6. Flåm, Sjur Didrik, 2015. "Bilateral exchange and competitive equilibrium," Working Papers in Economics 05/15, University of Bergen, Department of Economics.
    7. Sjur Didrik Flåm, 2016. "Noncooperative games, coupling constraints, and partial efficiency," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 4(2), pages 213-229, October.
    8. Ion Necoara & Andrei Patrascu, 2014. "A random coordinate descent algorithm for optimization problems with composite objective function and linear coupled constraints," Computational Optimization and Applications, Springer, vol. 57(2), pages 307-337, March.
    9. Sjur Didrik Flåm, 2019. "Blocks of coordinates, stochastic programming, and markets," Computational Management Science, Springer, vol. 16(1), pages 3-16, February.
    10. Qi Tian & Xiaoliang Wang & Liping Pang & Mingkun Zhang & Fanyun Meng, 2021. "A New Hybrid Three-Term Conjugate Gradient Algorithm for Large-Scale Unconstrained Problems," Mathematics, MDPI, vol. 9(12), pages 1-13, June.
    11. Andrea Simonetto & Hadi Jamali-Rad, 2016. "Primal Recovery from Consensus-Based Dual Decomposition for Distributed Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 168(1), pages 172-197, January.
    12. Wu, Kunming & Li, Qiang & Chen, Ziyu & Lin, Jiayang & Yi, Yongli & Chen, Minyou, 2021. "Distributed optimization method with weighted gradients for economic dispatch problem of multi-microgrid systems," Energy, Elsevier, vol. 222(C).
    13. Andrea Cristofari, 2019. "An almost cyclic 2-coordinate descent method for singly linearly constrained problems," Computational Optimization and Applications, Springer, vol. 73(2), pages 411-452, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:84:y:2022:i:4:d:10.1007_s10898-022-01189-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.