IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v71y2018i1d10.1007_s10898-017-0555-4.html
   My bibliography  Save this article

Solving a set of global optimization problems by the parallel technique with uniform convergence

Author

Listed:
  • Konstantin Barkalov

    (Lobachevsky State University of Nizhni Novgorod)

  • Roman Strongin

    (Lobachevsky State University of Nizhni Novgorod)

Abstract

In this paper, we consider solving a set of global optimization problems in parallel. The proposed novel algorithm provides uniform convergence to the set of solutions for all problems treated simultaneously. The current accuracy for each particular solution is estimated by the difference in each coordinate from the point of global decision. The main statement is given in the corresponding theorem. For the sake of illustration some computational results with hundreds of multidimensional global problems are provided.

Suggested Citation

  • Konstantin Barkalov & Roman Strongin, 2018. "Solving a set of global optimization problems by the parallel technique with uniform convergence," Journal of Global Optimization, Springer, vol. 71(1), pages 21-36, May.
  • Handle: RePEc:spr:jglopt:v:71:y:2018:i:1:d:10.1007_s10898-017-0555-4
    DOI: 10.1007/s10898-017-0555-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-017-0555-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-017-0555-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Konstantin Barkalov & Victor Gergel, 2016. "Parallel global optimization on GPU," Journal of Global Optimization, Springer, vol. 66(1), pages 3-20, September.
    2. Remigijus Paulavičius & Yaroslav Sergeyev & Dmitri Kvasov & Julius Žilinskas, 2014. "Globally-biased Disimpl algorithm for expensive global optimization," Journal of Global Optimization, Springer, vol. 59(2), pages 545-567, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lera, Daniela & Posypkin, Mikhail & Sergeyev, Yaroslav D., 2021. "Space-filling curves for numerical approximation and visualization of solutions to systems of nonlinear inequalities with applications in robotics," Applied Mathematics and Computation, Elsevier, vol. 390(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniela Lera & Yaroslav D. Sergeyev, 2018. "GOSH: derivative-free global optimization using multi-dimensional space-filling curves," Journal of Global Optimization, Springer, vol. 71(1), pages 193-211, May.
    2. Kvasov, Dmitri E. & Mukhametzhanov, Marat S., 2018. "Metaheuristic vs. deterministic global optimization algorithms: The univariate case," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 245-259.
    3. Grishagin, Vladimir & Israfilov, Ruslan & Sergeyev, Yaroslav, 2018. "Convergence conditions and numerical comparison of global optimization methods based on dimensionality reduction schemes," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 270-280.
    4. Jin, Zhong & Y. Gao, David, 2017. "On modeling and global solutions for d.c. optimization problems by canonical duality theory," Applied Mathematics and Computation, Elsevier, vol. 296(C), pages 168-181.
    5. Rudolf Scitovski, 2017. "A new global optimization method for a symmetric Lipschitz continuous function and the application to searching for a globally optimal partition of a one-dimensional set," Journal of Global Optimization, Springer, vol. 68(4), pages 713-727, August.
    6. Qunfeng Liu & Jinping Zeng & Gang Yang, 2015. "MrDIRECT: a multilevel robust DIRECT algorithm for global optimization problems," Journal of Global Optimization, Springer, vol. 62(2), pages 205-227, June.
    7. Rudolf Scitovski & Kristian Sabo, 2019. "Application of the DIRECT algorithm to searching for an optimal k-partition of the set $$\mathcal {A}\subset \mathbb {R}^n$$ A ⊂ R n and its application to the multiple circle detection problem," Journal of Global Optimization, Springer, vol. 74(1), pages 63-77, May.
    8. Stripinis, Linas & Žilinskas, Julius & Casado, Leocadio G. & Paulavičius, Remigijus, 2021. "On MATLAB experience in accelerating DIRECT-GLce algorithm for constrained global optimization through dynamic data structures and parallelization," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    9. Linas Stripinis & Remigijus Paulavičius, 2023. "Novel Algorithm for Linearly Constrained Derivative Free Global Optimization of Lipschitz Functions," Mathematics, MDPI, vol. 11(13), pages 1-19, June.
    10. Nazih-Eddine Belkacem & Lakhdar Chiter & Mohammed Louaked, 2024. "A Novel Approach to Enhance DIRECT -Type Algorithms for Hyper-Rectangle Identification," Mathematics, MDPI, vol. 12(2), pages 1-24, January.
    11. G. Liuzzi & S. Lucidi & V. Piccialli, 2016. "Exploiting derivative-free local searches in DIRECT-type algorithms for global optimization," Computational Optimization and Applications, Springer, vol. 65(2), pages 449-475, November.
    12. Remigijus Paulavičius & Lakhdar Chiter & Julius Žilinskas, 2018. "Global optimization based on bisection of rectangles, function values at diagonals, and a set of Lipschitz constants," Journal of Global Optimization, Springer, vol. 71(1), pages 5-20, May.
    13. E. F. Campana & M. Diez & G. Liuzzi & S. Lucidi & R. Pellegrini & V. Piccialli & F. Rinaldi & A. Serani, 2018. "A multi-objective DIRECT algorithm for ship hull optimization," Computational Optimization and Applications, Springer, vol. 71(1), pages 53-72, September.
    14. Andrea Cristofari & Giuseppe Fabri & Stefano Lucidi & Francesco Rinaldi & Francesco Romito & Marco Santececca & Marco Villani, 2017. "Design Optimization of Synchronous Reluctance Motor for low Torque Ripple," DIAG Technical Reports 2017-10, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    15. Jonas Mockus & Remigijus Paulavičius & Dainius Rusakevičius & Dmitrij Šešok & Julius Žilinskas, 2017. "Application of Reduced-set Pareto-Lipschitzian Optimization to truss optimization," Journal of Global Optimization, Springer, vol. 67(1), pages 425-450, January.
    16. Donald R. Jones & Joaquim R. R. A. Martins, 2021. "The DIRECT algorithm: 25 years Later," Journal of Global Optimization, Springer, vol. 79(3), pages 521-566, March.
    17. Ferreiro-Ferreiro, Ana M. & García-Rodríguez, José A. & Souto, Luis & Vázquez, Carlos, 2019. "Basin Hopping with synched multi L-BFGS local searches. Parallel implementation in multi-CPU and GPUs," Applied Mathematics and Computation, Elsevier, vol. 356(C), pages 282-298.
    18. Yaroslav D. Sergeyev & Marat S. Mukhametzhanov & Dmitri E. Kvasov & Daniela Lera, 2016. "Derivative-Free Local Tuning and Local Improvement Techniques Embedded in the Univariate Global Optimization," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 186-208, October.
    19. Albertas Gimbutas & Antanas Žilinskas, 2018. "An algorithm of simplicial Lipschitz optimization with the bi-criteria selection of simplices for the bi-section," Journal of Global Optimization, Springer, vol. 71(1), pages 115-127, May.
    20. Qunfeng Liu & Guang Yang & Zhongzhi Zhang & Jinping Zeng, 2017. "Improving the convergence rate of the DIRECT global optimization algorithm," Journal of Global Optimization, Springer, vol. 67(4), pages 851-872, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:71:y:2018:i:1:d:10.1007_s10898-017-0555-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.