IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v37y2019i1d10.1007_s10878-017-0212-3.html
   My bibliography  Save this article

An integrated method to solve the healthcare facility layout problem under area constraints

Author

Listed:
  • Ling Gai

    (Shanghai University)

  • Jiandong Ji

    (Shanghai University)

Abstract

In this paper, the healthcare facility layout problem with area constraints is considered, a proper departments arrangement is selected such that the operating cost and system efficiency are guaranteed. We propose an integrated method to consider both quantitative and qualitative criteria to get a synthesize rank of the feasible alternatives. On quantitative aspects, several feasible layout solutions are generated with the ranking of operation cost; On qualitative aspects, the layout alternatives are evaluated by experts on their multiple attributes, the evaluation scores given by experts are in the form of intuitionistic fuzzy sets. We assume that the weights of attributes and experts are partially known or unknown in advance, and the weights of each expert on different attributes are different. An illustrative example is shown to demonstrate the application of the proposed methodology.

Suggested Citation

  • Ling Gai & Jiandong Ji, 2019. "An integrated method to solve the healthcare facility layout problem under area constraints," Journal of Combinatorial Optimization, Springer, vol. 37(1), pages 95-113, January.
  • Handle: RePEc:spr:jcomop:v:37:y:2019:i:1:d:10.1007_s10878-017-0212-3
    DOI: 10.1007/s10878-017-0212-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-017-0212-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-017-0212-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liwei Zhong & Shoucheng Luo & Lidong Wu & Lin Xu & Jinghui Yang & Guochun Tang, 2014. "A two-stage approach for surgery scheduling," Journal of Combinatorial Optimization, Springer, vol. 27(3), pages 545-556, April.
    2. Y. H. Gu & M. Goh & Q. L. Chen & R. D. Souza & G. C. Tang, 2013. "A new two-party bargaining mechanism," Journal of Combinatorial Optimization, Springer, vol. 25(1), pages 135-163, January.
    3. Shan Wang & Huiqiao Su & Guohua Wan, 2015. "Resource-constrained machine scheduling with machine eligibility restriction and its applications to surgical operations scheduling," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 982-995, November.
    4. Kim, Soung Hie & Ahn, Byeong Seok, 1999. "Interactive group decision making procedure under incomplete information," European Journal of Operational Research, Elsevier, vol. 116(3), pages 498-507, August.
    5. Jing Fan & Xiwen Lu, 2015. "Supply chain scheduling problem in the hospital with periodic working time on a single machine," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 892-905, November.
    6. Yanhong Gu & Jing Fan & Guochun Tang & Jiaofei Zhong, 2013. "Maximum latency scheduling problem on two-person cooperative games," Journal of Combinatorial Optimization, Springer, vol. 26(1), pages 71-81, July.
    7. Hanif D. Sherali & Barbara M. P. Fraticelli & Russell D. Meller, 2003. "Enhanced Model Formulations for Optimal Facility Layout," Operations Research, INFORMS, vol. 51(4), pages 629-644, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuerui Gao & Yanqin Bai & Qian Li, 2021. "A sparse optimization problem with hybrid $$L_2{\text {-}}L_p$$ L 2 - L p regularization for application of magnetic resonance brain images," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 760-784, November.
    2. Ruiping Wang & Mei Wang & Jian Chang & Zai Luo & Feng Zhang & Chen Huang, 2021. "An optimized approach of venous thrombus embolism risk assessment," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 1053-1063, November.
    3. Qian Li & Wei Zhang, 0. "An improved linear convergence of FISTA for the LASSO problem with application to CT image reconstruction," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-17.
    4. Ling Gai & Zhiyue Peng & Jiming Zhang & Jiafu Zhang, 2021. "Emergency medical center location problem with people evacuation solved by extended TODIM and objective programming," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 1004-1029, November.
    5. Xuanzhu Fan & Jiafu Tang & Chongjun Yan & Hainan Guo & Zhongfa Cao, 2021. "Outpatient appointment scheduling problem considering patient selection behavior: data modeling and simulation optimization," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 677-699, November.
    6. Qian Li & Wei Zhang, 2021. "An improved linear convergence of FISTA for the LASSO problem with application to CT image reconstruction," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 831-847, November.
    7. Xuerui Gao & Yanqin Bai & Qian Li, 0. "A sparse optimization problem with hybrid $$L_2{\text {-}}L_p$$L2-Lp regularization for application of magnetic resonance brain images," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-25.
    8. Xuanzhu Fan & Jiafu Tang & Chongjun Yan & Hainan Guo & Zhongfa Cao, 0. "Outpatient appointment scheduling problem considering patient selection behavior: data modeling and simulation optimization," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-23.
    9. He Huang & Wei Gao & Chunming Ye, 0. "An intelligent data-driven model for disease diagnosis based on machine learning theory," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-12.
    10. Ruiping Wang & Mei Wang & Jian Chang & Zai Luo & Feng Zhang & Chen Huang, 0. "An optimized approach of venous thrombus embolism risk assessment," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-11.
    11. Ling Gai & Zhiyue Peng & Jiming Zhang & Jiafu Zhang, 0. "Emergency medical center location problem with people evacuation solved by extended TODIM and objective programming," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-26.
    12. He Huang & Wei Gao & Chunming Ye, 2021. "An intelligent data-driven model for disease diagnosis based on machine learning theory," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 884-895, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Gao & Wuping Bao & Xin Zhou, 2019. "Analysis of cough detection index based on decision tree and support vector machine," Journal of Combinatorial Optimization, Springer, vol. 37(1), pages 375-384, January.
    2. Jing Fan & Hui Shi, 0. "A three-stage supply chain scheduling problem based on the nursing assistants’ daily work in a hospital," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-13.
    3. Jing Fan & Hui Shi, 2021. "A three-stage supply chain scheduling problem based on the nursing assistants’ daily work in a hospital," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 896-908, November.
    4. Xi Chen & Zhiping Fan & Zhiwu Li & Xueliang Han & Xiao Zhang & Haochen Jia, 2015. "A two-stage method for member selection of emergency medical service," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 871-891, November.
    5. Gang Du & Luyao Zheng & Xiaoling Ouyang, 2019. "Real-time scheduling optimization considering the unexpected events in home health care," Journal of Combinatorial Optimization, Springer, vol. 37(1), pages 196-220, January.
    6. Dias, Luis C. & Climaco, Joao N., 2005. "Dealing with imprecise information in group multicriteria decisions: a methodology and a GDSS architecture," European Journal of Operational Research, Elsevier, vol. 160(2), pages 291-307, January.
    7. Zhiguo Wang & Lufei Huang & Cici Xiao He, 2021. "A multi-objective and multi-period optimization model for urban healthcare waste’s reverse logistics network design," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 785-812, November.
    8. Madjid Tavana & Mariya Sodenkamp & Leena Suhl, 2010. "A soft multi-criteria decision analysis model with application to the European Union enlargement," Annals of Operations Research, Springer, vol. 181(1), pages 393-421, December.
    9. Lili Liu & Guochun Tang & Baoqiang Fan & Xingpeng Wang, 2015. "Two-person cooperative games on scheduling problems in outpatient pharmacy dispensing process," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 938-948, November.
    10. Beibei Li & Zhihong Zhao & Xuan Shen & Cendi Xue & Liwei Zhong, 2015. "Fitting $$\alpha $$ α $$\beta $$ β -crystalline structure onto electron microscopy based on SO(3) rotation group theory," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 906-919, November.
    11. Ali, Agha Iqbal & O'Connor, Debra J., 2010. "The impact of distribution system characteristics on computational tractability," European Journal of Operational Research, Elsevier, vol. 200(2), pages 323-333, January.
    12. Jing Li & Ming Dong & Yijiong Ren & Kaiqi Yin, 2015. "How patient compliance impacts the recommendations for colorectal cancer screening," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 920-937, November.
    13. M Tavana & M A Sodenkamp, 2010. "A fuzzy multi-criteria decision analysis model for advanced technology assessment at Kennedy Space Center," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(10), pages 1459-1470, October.
    14. Carrizosa, Emilio & Guerrero, Vanesa & Romero Morales, Dolores, 2018. "On Mathematical Optimization for the visualization of frequencies and adjacencies as rectangular maps," European Journal of Operational Research, Elsevier, vol. 265(1), pages 290-302.
    15. Fu, Chao & Yang, Shanlin, 2012. "An evidential reasoning based consensus model for multiple attribute group decision analysis problems with interval-valued group consensus requirements," European Journal of Operational Research, Elsevier, vol. 223(1), pages 167-176.
    16. Yanqin Bai & Xiao Han & Tong Chen & Hua Yu, 2015. "Quadratic kernel-free least squares support vector machine for target diseases classification," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 850-870, November.
    17. Yadong Wang & Baoqiang Fan & Jingang Zhai & Wei Xiong, 2019. "Two-machine flowshop scheduling in a physical examination center," Journal of Combinatorial Optimization, Springer, vol. 37(1), pages 363-374, January.
    18. Jian Chang & Lingjuan Zhang, 2019. "Case Mix Index weighted multi-objective optimization of inpatient bed allocation in general hospital," Journal of Combinatorial Optimization, Springer, vol. 37(1), pages 1-19, January.
    19. Angilella, Silvia & Greco, Salvatore & Matarazzo, Benedetto, 2010. "Non-additive robust ordinal regression: A multiple criteria decision model based on the Choquet integral," European Journal of Operational Research, Elsevier, vol. 201(1), pages 277-288, February.
    20. Peng Liu & Xiaoli Wang, 2017. "Maximum Lateness Scheduling on Two-Person Cooperative Games with Variable Processing Times and Common Due Date," Journal of Optimization, Hindawi, vol. 2017, pages 1-7, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:37:y:2019:i:1:d:10.1007_s10878-017-0212-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.