IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v28y2014i2d10.1007_s10878-012-9571-y.html
   My bibliography  Save this article

Online graph exploration algorithms for cycles and trees by multiple searchers

Author

Listed:
  • Yuya Higashikawa

    (Kyoto University)

  • Naoki Katoh

    (Kyoto University)

  • Stefan Langerman

    (Université Libre de Bruxelles)

  • Shin-ichi Tanigawa

    (Kyoto University)

Abstract

This paper deals with online graph exploration problems by multiple searchers. The information on the graph is given online. As the exploration proceeds, searchers gain more information on the graph. Assuming an appropriate communication model among searchers, searchers can share the information about the environment. Thus, a searcher must decide which vertex to visit next based on the partial information on the graph gained so far by searchers. We assume that all searchers initially start the exploration at the origin vertex, and the goal is that each vertex is visited by at least one searcher and all searchers finally return to the origin vertex. The objective is to minimize the time when the goal is achieved. We study the case of cycles and trees. For the former, we give an optimal online exploration algorithm in terms of competitive ratio, and for the latter, we also give an online exploration algorithm which is optimal among greedy algorithms.

Suggested Citation

  • Yuya Higashikawa & Naoki Katoh & Stefan Langerman & Shin-ichi Tanigawa, 2014. "Online graph exploration algorithms for cycles and trees by multiple searchers," Journal of Combinatorial Optimization, Springer, vol. 28(2), pages 480-495, August.
  • Handle: RePEc:spr:jcomop:v:28:y:2014:i:2:d:10.1007_s10878-012-9571-y
    DOI: 10.1007/s10878-012-9571-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-012-9571-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-012-9571-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michiel Blom & Sven O. Krumke & Willem E. de Paepe & Leen Stougie, 2001. "The Online TSP Against Fair Adversaries," INFORMS Journal on Computing, INFORMS, vol. 13(2), pages 138-148, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Devansh Jalota & Dario Paccagnan & Maximilian Schiffer & Marco Pavone, 2023. "Online Routing Over Parallel Networks: Deterministic Limits and Data-driven Enhancements," INFORMS Journal on Computing, INFORMS, vol. 35(3), pages 560-577, May.
    2. Tengyu Wu & Lin He & Haiyan Yu, 0. "Online traveling salesman problem with time cost and non-zealous server," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-24.
    3. Patrick Jaillet & Michael R. Wagner, 2006. "Online Routing Problems: Value of Advanced Information as Improved Competitive Ratios," Transportation Science, INFORMS, vol. 40(2), pages 200-210, May.
    4. Patrick Jaillet & Michael R. Wagner, 2008. "Generalized Online Routing: New Competitive Ratios, Resource Augmentation, and Asymptotic Analyses," Operations Research, INFORMS, vol. 56(3), pages 745-757, June.
    5. Xingang Wen & Yinfeng Xu & Huili Zhang, 2015. "Online traveling salesman problem with deadlines and service flexibility," Journal of Combinatorial Optimization, Springer, vol. 30(3), pages 545-562, October.
    6. Yu, Wei & Liu, Zhaohui & Bao, Xiaoguang, 2014. "Optimal deterministic algorithms for some variants of Online Quota Traveling Salesman Problem," European Journal of Operational Research, Elsevier, vol. 238(3), pages 735-740.
    7. Srour, F.J. & Zuidwijk, R.A., 2008. "How Much is Location Information Worth? A Competitive Analysis of the Online Traveling Salesman Problem with Two Disclosure Dates," ERIM Report Series Research in Management ERS-2008-075-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    8. Tengyu Wu & Lin He & Haiyan Yu, 2022. "Online traveling salesman problem with time cost and non-zealous server," Journal of Combinatorial Optimization, Springer, vol. 44(3), pages 2143-2166, October.
    9. Devansh Jalota & Yinyu Ye, 2022. "Stochastic Online Fisher Markets: Static Pricing Limits and Adaptive Enhancements," Papers 2205.00825, arXiv.org, revised Jan 2023.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:28:y:2014:i:2:d:10.1007_s10878-012-9571-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.