IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v12y2006i4d10.1007_s10878-006-9006-8.html
   My bibliography  Save this article

Inverse maximum flow problems under the weighted Hamming distance

Author

Listed:
  • Longcheng Liu

    (Zhejiang University)

  • Jianzhong Zhang

    (The Chinese University of Hong Kong)

Abstract

In this paper, we consider inverse maximum flow problem under the weighted Hamming distance. Four models are studied: the problem under sum-type weighted Hamming distance; the problem under bottleneck-type weighted Hamming distance and two mixed types of problems. We present their respective combinatorial algorithms that all run in strongly polynomial times.

Suggested Citation

  • Longcheng Liu & Jianzhong Zhang, 2006. "Inverse maximum flow problems under the weighted Hamming distance," Journal of Combinatorial Optimization, Springer, vol. 12(4), pages 395-408, December.
  • Handle: RePEc:spr:jcomop:v:12:y:2006:i:4:d:10.1007_s10878-006-9006-8
    DOI: 10.1007/s10878-006-9006-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-006-9006-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-006-9006-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yong He & Binwu Zhang & Enyu Yao, 2005. "Weighted Inverse Minimum Spanning Tree Problems Under Hamming Distance," Journal of Combinatorial Optimization, Springer, vol. 9(1), pages 91-100, February.
    2. Duin, C.W. & Volgenant, A., 2006. "Some inverse optimization problems under the Hamming distance," European Journal of Operational Research, Elsevier, vol. 170(3), pages 887-899, May.
    3. Binwu Zhang & Jianzhong Zhang & Yong He, 2005. "The Center Location Improvement Problem Under the Hamming Distance," Journal of Combinatorial Optimization, Springer, vol. 9(2), pages 187-198, March.
    4. Clemens Heuberger, 2004. "Inverse Combinatorial Optimization: A Survey on Problems, Methods, and Results," Journal of Combinatorial Optimization, Springer, vol. 8(3), pages 329-361, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adrian Deaconu & Laura Ciupala, 2020. "Inverse Minimum Cut Problem with Lower and Upper Bounds," Mathematics, MDPI, vol. 8(9), pages 1-10, September.
    2. Çiğdem Güler & Horst W. Hamacher, 2010. "Capacity inverse minimum cost flow problem," Journal of Combinatorial Optimization, Springer, vol. 19(1), pages 43-59, January.
    3. Rishabh Gupta & Qi Zhang, 2022. "Decomposition and Adaptive Sampling for Data-Driven Inverse Linear Optimization," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2720-2735, September.
    4. Javad Tayyebi & Adrian Deaconu, 2019. "Inverse Generalized Maximum Flow Problems," Mathematics, MDPI, vol. 7(10), pages 1-15, September.
    5. Xianyue Li & Xichao Shu & Huijing Huang & Jingjing Bai, 2019. "Capacitated partial inverse maximum spanning tree under the weighted Hamming distance," Journal of Combinatorial Optimization, Springer, vol. 38(4), pages 1005-1018, November.
    6. Jiang, Yiwei & Liu, Longcheng & Wu, Biao & Yao, Enyu, 2010. "Inverse minimum cost flow problems under the weighted Hamming distance," European Journal of Operational Research, Elsevier, vol. 207(1), pages 50-54, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Binwu Zhang & Xiucui Guan & Panos M. Pardalos & Chunyuan He, 2018. "An Algorithm for Solving the Shortest Path Improvement Problem on Rooted Trees Under Unit Hamming Distance," Journal of Optimization Theory and Applications, Springer, vol. 178(2), pages 538-559, August.
    2. Jiang, Yiwei & Liu, Longcheng & Wu, Biao & Yao, Enyu, 2010. "Inverse minimum cost flow problems under the weighted Hamming distance," European Journal of Operational Research, Elsevier, vol. 207(1), pages 50-54, November.
    3. Longcheng Liu & Enyu Yao, 2013. "Weighted inverse maximum perfect matching problems under the Hamming distance," Journal of Global Optimization, Springer, vol. 55(3), pages 549-557, March.
    4. Xiucui Guan & Xinyan He & Panos M. Pardalos & Binwu Zhang, 2017. "Inverse max $$+$$ + sum spanning tree problem under Hamming distance by modifying the sum-cost vector," Journal of Global Optimization, Springer, vol. 69(4), pages 911-925, December.
    5. Binwu Zhang & Jianzhong Zhang & Liqun Qi, 2006. "The shortest path improvement problems under Hamming distance," Journal of Combinatorial Optimization, Springer, vol. 12(4), pages 351-361, December.
    6. Xianyue Li & Xichao Shu & Huijing Huang & Jingjing Bai, 2019. "Capacitated partial inverse maximum spanning tree under the weighted Hamming distance," Journal of Combinatorial Optimization, Springer, vol. 38(4), pages 1005-1018, November.
    7. Javad Tayyebi & Ali Reza Sepasian, 2020. "Partial inverse min–max spanning tree problem," Journal of Combinatorial Optimization, Springer, vol. 40(4), pages 1075-1091, November.
    8. Xiucui Guan & Panos Pardalos & Xia Zuo, 2015. "Inverse Max + Sum spanning tree problem by modifying the sum-cost vector under weighted $$l_\infty $$ l ∞ Norm," Journal of Global Optimization, Springer, vol. 61(1), pages 165-182, January.
    9. Junhua Jia & Xiucui Guan & Qiao Zhang & Xinqiang Qian & Panos M. Pardalos, 2022. "Inverse max+sum spanning tree problem under weighted $$l_{\infty }$$ l ∞ norm by modifying max-weight vector," Journal of Global Optimization, Springer, vol. 84(3), pages 715-738, November.
    10. Libura, Marek, 2007. "On the adjustment problem for linear programs," European Journal of Operational Research, Elsevier, vol. 183(1), pages 125-134, November.
    11. Burkard, Rainer E. & Galavii, Mohammadreza & Gassner, Elisabeth, 2010. "The inverse Fermat-Weber problem," European Journal of Operational Research, Elsevier, vol. 206(1), pages 11-17, October.
    12. Abumoslem Mohammadi & Javad Tayyebi, 2019. "Maximum Capacity Path Interdiction Problem with Fixed Costs," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(04), pages 1-21, August.
    13. Gassner, Elisabeth, 2009. "Up- and downgrading the 1-center in a network," European Journal of Operational Research, Elsevier, vol. 198(2), pages 370-377, October.
    14. Yi Zhang & Liwei Zhang & Yue Wu, 2014. "The augmented Lagrangian method for a type of inverse quadratic programming problems over second-order cones," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 45-79, April.
    15. Timothy C. Y. Chan & Tim Craig & Taewoo Lee & Michael B. Sharpe, 2014. "Generalized Inverse Multiobjective Optimization with Application to Cancer Therapy," Operations Research, INFORMS, vol. 62(3), pages 680-695, June.
    16. Nguyen, Kien Trung & Hung, Nguyen Thanh, 2021. "The minmax regret inverse maximum weight problem," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    17. Zeynep Erkin & Matthew D. Bailey & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2010. "Eliciting Patients' Revealed Preferences: An Inverse Markov Decision Process Approach," Decision Analysis, INFORMS, vol. 7(4), pages 358-365, December.
    18. Chassein, André & Goerigk, Marc, 2018. "Variable-sized uncertainty and inverse problems in robust optimization," European Journal of Operational Research, Elsevier, vol. 264(1), pages 17-28.
    19. Vincent Mousseau & Özgür Özpeynirci & Selin Özpeynirci, 2018. "Inverse multiple criteria sorting problem," Annals of Operations Research, Springer, vol. 267(1), pages 379-412, August.
    20. T. R. Wang & N. Pedroni & E. Zio & V. Mousseau, 2020. "Identification of Protective Actions to Reduce the Vulnerability of Safety‐Critical Systems to Malevolent Intentional Acts: An Optimization‐Based Decision‐Making Approach," Risk Analysis, John Wiley & Sons, vol. 40(3), pages 565-587, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:12:y:2006:i:4:d:10.1007_s10878-006-9006-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.