IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v30y2025i3d10.1007_s13253-024-00603-3.html
   My bibliography  Save this article

Multi-omics Integrative Analysis for Incomplete Data Using Weighted p-Value Adjustment Approaches

Author

Listed:
  • Wenda Zhang

    (Walmart Global Tech)

  • Zichen Ma

    (Colgate University)

  • Yen-Yi Ho

    (University of South Carolina)

  • Shuyi Yang

    (University of South Carolina)

  • Joshua Habiger

    (Oklahoma State University)

  • Hsin-Hsiung Huang

    (University of Central Florida)

  • Yufei Huang

    (University of Pittsburgh)

Abstract

The advancements in high-throughput technologies provide exciting opportunities to obtain multi-omics data from the same individuals in a biomedical study, and joint analyses of data from multiple sources offer many benefits. However, the occurrence of missing values is an inevitable issue in multi-omics data because measurements such as mRNA gene expression levels often require invasive tissue sampling from patients. Common approaches for addressing missing measurements include analyses based on observations with complete data or multiple imputation methods. In this paper, we propose a novel integrative multi-omics analytical framework based on p-value weight adjustment in order to incorporate observations with incomplete data into the analysis. By splitting the data into a complete set with full information and an incomplete set with missing measurements, we introduce mechanisms to derive weights and weight-adjusted p-values from the two sets. Through simulation analyses, we demonstrate that the proposed framework achieves considerable statistical power gains compared to a complete case analysis or multiple imputation approaches. We illustrate the implementation of our proposed framework in a study of preterm infant birth weights by a joint analysis of DNA methylation, mRNA, and the phenotypic outcome. Supplementary materials accompanying this paper appear online.

Suggested Citation

  • Wenda Zhang & Zichen Ma & Yen-Yi Ho & Shuyi Yang & Joshua Habiger & Hsin-Hsiung Huang & Yufei Huang, 2025. "Multi-omics Integrative Analysis for Incomplete Data Using Weighted p-Value Adjustment Approaches," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 30(3), pages 601-617, September.
  • Handle: RePEc:spr:jagbes:v:30:y:2025:i:3:d:10.1007_s13253-024-00603-3
    DOI: 10.1007/s13253-024-00603-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-024-00603-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-024-00603-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. van Buuren, Stef & Groothuis-Oudshoorn, Karin, 2011. "mice: Multivariate Imputation by Chained Equations in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 45(i03).
    2. Yaowu Liu & Jun Xie, 2020. "Cauchy Combination Test: A Powerful Test With Analytic p-Value Calculation Under Arbitrary Dependency Structures," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 393-402, January.
    3. John D. Storey & Jonathan E. Taylor & David Siegmund, 2004. "Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 187-205, February.
    4. Yumei Yang & Qishan Wang & Qiang Chen & Rongrong Liao & Xiangzhe Zhang & Hongjie Yang & Youmin Zheng & Zhiwu Zhang & Yuchun Pan, 2014. "A New Genotype Imputation Method with Tolerance to High Missing Rate and Rare Variants," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-7, June.
    5. Christopher R. Genovese & Kathryn Roeder & Larry Wasserman, 2006. "False discovery control with p-value weighting," Biometrika, Biometrika Trust, vol. 93(3), pages 509-524, September.
    6. Jeffrey T Leek & John D Storey, 2007. "Capturing Heterogeneity in Gene Expression Studies by Surrogate Variable Analysis," PLOS Genetics, Public Library of Science, vol. 3(9), pages 1-12, September.
    7. Seungchul Baek & Yen‐Yi Ho & Yanyuan Ma, 2020. "Using sufficient direction factor model to analyze latent activities associated with breast cancer survival," Biometrics, The International Biometric Society, vol. 76(4), pages 1340-1350, December.
    8. Nikolaos Ignatiadis & Wolfgang Huber, 2021. "Covariate powered cross‐weighted multiple testing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(4), pages 720-751, September.
    9. Sihai D. Zhao & T. Tony Cai & Hongzhe Li, 2014. "More powerful genetic association testing via a new statistical framework for integrative genomics," Biometrics, The International Biometric Society, vol. 70(4), pages 881-890, December.
    10. Gokul Ramaswami & Hyejung Won & Michael J. Gandal & Jillian Haney & Jerry C. Wang & Chloe C. Y. Wong & Wenjie Sun & Shyam Prabhakar & Jonathan Mill & Daniel H. Geschwind, 2020. "Integrative genomics identifies a convergent molecular subtype that links epigenomic with transcriptomic differences in autism," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aniket Biswas & Gaurangadeb Chattopadhyay, 2023. "New results for adaptive false discovery rate control with p-value weighting," Statistical Papers, Springer, vol. 64(6), pages 1969-1996, December.
    2. Andrew Y. Chen & Tom Zimmermann, 2022. "Publication Bias in Asset Pricing Research," Papers 2209.13623, arXiv.org, revised Sep 2023.
    3. Leek Jeffrey T & Storey John D., 2011. "The Joint Null Criterion for Multiple Hypothesis Tests," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-22, June.
    4. Yoav Benjamini, 2010. "Discovering the false discovery rate," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 405-416, September.
    5. Shilpa Nadimpalli Kobren & Mikhail A. Moldovan & Rebecca Reimers & Daniel Traviglia & Xinyun Li & Danielle Barnum & Alexander Veit & Rosario I. Corona & George de V. Carvalho Neto & Julian Willett & M, 2025. "Joint, multifaceted genomic analysis enables diagnosis of diverse, ultra-rare monogenic presentations," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
    6. Habiger, Joshua D. & Peña, Edsel A., 2014. "Compound p-value statistics for multiple testing procedures," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 153-166.
    7. Xiongzhi Chen, 2025. "Uniformly consistent proportion estimation for composite hypotheses via integral equations: “the case of Gamma random variables”," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 77(4), pages 649-684, August.
    8. Congran Yu & Hengjian Cui, 2025. "Feature screening via false discovery rate control for linear model with multivariate responses," Statistical Papers, Springer, vol. 66(2), pages 1-29, February.
    9. Remo Monti & Pia Rautenstrauch & Mahsa Ghanbari & Alva Rani James & Matthias Kirchler & Uwe Ohler & Stefan Konigorski & Christoph Lippert, 2022. "Identifying interpretable gene-biomarker associations with functionally informed kernel-based tests in 190,000 exomes," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    10. Nikolaos Ignatiadis & Wolfgang Huber, 2021. "Covariate powered cross‐weighted multiple testing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(4), pages 720-751, September.
    11. Zhao, Haibing & Fung, Wing Kam, 2016. "A powerful FDR control procedure for multiple hypotheses," Computational Statistics & Data Analysis, Elsevier, vol. 98(C), pages 60-70.
    12. Abhilash Bandam & Eedris Busari & Chloi Syranidou & Jochen Linssen & Detlef Stolten, 2022. "Classification of Building Types in Germany: A Data-Driven Modeling Approach," Data, MDPI, vol. 7(4), pages 1-23, April.
    13. Boonstra Philip S. & Little Roderick J.A. & West Brady T. & Andridge Rebecca R. & Alvarado-Leiton Fernanda, 2021. "A Simulation Study of Diagnostics for Selection Bias," Journal of Official Statistics, Sciendo, vol. 37(3), pages 751-769, September.
    14. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    15. Norah Alyabs & Sy Han Chiou, 2022. "The Missing Indicator Approach for Accelerated Failure Time Model with Covariates Subject to Limits of Detection," Stats, MDPI, vol. 5(2), pages 1-13, May.
    16. Marek Šedivý, 2023. "Mortality shocks and household consumption: the case of Mexico," Review of Economics of the Household, Springer, vol. 21(4), pages 1289-1358, December.
    17. Jianqing Fan & Xu Han, 2017. "Estimation of the false discovery proportion with unknown dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1143-1164, September.
    18. Eunsil Seok & Akhgar Ghassabian & Yuyan Wang & Mengling Liu, 2024. "Statistical Methods for Modeling Exposure Variables Subject to Limit of Detection," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 16(2), pages 435-458, July.
    19. Ida Kubiszewski & Kenneth Mulder & Diane Jarvis & Robert Costanza, 2022. "Toward better measurement of sustainable development and wellbeing: A small number of SDG indicators reliably predict life satisfaction," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(1), pages 139-148, February.
    20. Georges Steffgen & Philipp E. Sischka & Martha Fernandez de Henestrosa, 2020. "The Quality of Work Index and the Quality of Employment Index: A Multidimensional Approach of Job Quality and Its Links to Well-Being at Work," IJERPH, MDPI, vol. 17(21), pages 1-31, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:30:y:2025:i:3:d:10.1007_s13253-024-00603-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.