IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v77y2025i4d10.1007_s10463-025-00930-3.html
   My bibliography  Save this article

Uniformly consistent proportion estimation for composite hypotheses via integral equations: “the case of Gamma random variables”

Author

Listed:
  • Xiongzhi Chen

    (Washington State University)

Abstract

We consider estimating the proportion of random variables for two types of composite null hypotheses: (i) the means of the random variables belonging to a non-empty, bounded interval; (ii) the means of the random variables belonging to an unbounded interval that is not the whole real line. For each type of composite null hypotheses, uniformly consistent estimators of the proportion of false null hypotheses are constructed for random variables whose distributions are members of the Gamma family. Further, uniformly consistent estimators of certain functions of a bounded null on the means are provided for the random variables mentioned earlier. These functions are continuous and of bounded variation. The estimators are constructed via solutions to Lebesgue-Stieltjes integral equations and harmonic analysis, do not rely on a concept of p-value, and have various applications.

Suggested Citation

  • Xiongzhi Chen, 2025. "Uniformly consistent proportion estimation for composite hypotheses via integral equations: “the case of Gamma random variables”," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 77(4), pages 649-684, August.
  • Handle: RePEc:spr:aistmt:v:77:y:2025:i:4:d:10.1007_s10463-025-00930-3
    DOI: 10.1007/s10463-025-00930-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-025-00930-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-025-00930-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Yoav Benjamini & Abba M. Krieger & Daniel Yekutieli, 2006. "Adaptive linear step-up procedures that control the false discovery rate," Biometrika, Biometrika Trust, vol. 93(3), pages 491-507, September.
    2. John D. Storey, 2007. "The optimal discovery procedure: a new approach to simultaneous significance testing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(3), pages 347-368, June.
    3. Nikolaos Ignatiadis & Wolfgang Huber, 2021. "Covariate powered cross‐weighted multiple testing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(4), pages 720-751, September.
    4. Cai, T. Tony & Sun, Wenguang, 2009. "Simultaneous Testing of Grouped Hypotheses: Finding Needles in Multiple Haystacks," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1467-1481.
    5. Christopher Genovese & Larry Wasserman, 2002. "Operating characteristics and extensions of the false discovery rate procedure," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 499-517, August.
    6. John D. Storey, 2002. "A direct approach to false discovery rates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 479-498, August.
    7. Jin, Jiashun & Cai, T. Tony, 2007. "Estimating the Null and the Proportion of Nonnull Effects in Large-Scale Multiple Comparisons," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 495-506, June.
    8. Chen, Xiongzhi, 2019. "Uniformly consistently estimating the proportion of false null hypotheses via Lebesgue–Stieltjes integral equations," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 724-744.
    9. John D. Storey & Jonathan E. Taylor & David Siegmund, 2004. "Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 187-205, February.
    10. Hu, James X. & Zhao, Hongyu & Zhou, Harrison H., 2010. "False Discovery Rate Control With Groups," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1215-1227.
    11. Jiashun Jin, 2008. "Proportion of non‐zero normal means: universal oracle equivalences and uniformly consistent estimators," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(3), pages 461-493, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xiongzhi, 2019. "Uniformly consistently estimating the proportion of false null hypotheses via Lebesgue–Stieltjes integral equations," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 724-744.
    2. Zhao, Haibing & Fung, Wing Kam, 2016. "A powerful FDR control procedure for multiple hypotheses," Computational Statistics & Data Analysis, Elsevier, vol. 98(C), pages 60-70.
    3. Habiger, Joshua D. & Peña, Edsel A., 2014. "Compound p-value statistics for multiple testing procedures," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 153-166.
    4. T. Tony Cai & Wenguang Sun, 2017. "Optimal screening and discovery of sparse signals with applications to multistage high throughput studies," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 197-223, January.
    5. T. Tony Cai & Wenguang Sun & Weinan Wang, 2019. "Covariate‐assisted ranking and screening for large‐scale two‐sample inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 187-234, April.
    6. Haibing Zhao & Xinping Cui, 2020. "Constructing confidence intervals for selected parameters," Biometrics, The International Biometric Society, vol. 76(4), pages 1098-1108, December.
    7. Li Wang, 2019. "Weighted multiple testing procedure for grouped hypotheses with k-FWER control," Computational Statistics, Springer, vol. 34(2), pages 885-909, June.
    8. Alejandro Ochoa & John D Storey & Manuel Llinás & Mona Singh, 2015. "Beyond the E-Value: Stratified Statistics for Protein Domain Prediction," PLOS Computational Biology, Public Library of Science, vol. 11(11), pages 1-21, November.
    9. Cipolli III, William & Hanson, Timothy & McLain, Alexander C., 2016. "Bayesian nonparametric multiple testing," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 64-79.
    10. Yoav Benjamini, 2010. "Discovering the false discovery rate," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 405-416, September.
    11. Haibing Zhao & Wing Kam Fung, 2018. "Controlling mixed directional false discovery rate in multidimensional decisions with applications to microarray studies," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 316-337, June.
    12. Aniket Biswas & Gaurangadeb Chattopadhyay, 2023. "New results for adaptive false discovery rate control with p-value weighting," Statistical Papers, Springer, vol. 64(6), pages 1969-1996, December.
    13. Adebowale J. Sijuwade & Swarnita Chakraborty & Nairanjana Dasgupta, 2024. "An inverse Laplace transform oracle estimator for the normal means problem," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 87(5), pages 533-550, July.
    14. Wen Shi & Xi Chen & Jennifer Shang, 2019. "An Efficient Morris Method-Based Framework for Simulation Factor Screening," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 745-770, October.
    15. Ruth Heller & Saharon Rosset, 2021. "Optimal control of false discovery criteria in the two‐group model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(1), pages 133-155, February.
    16. Xiaoquan Wen, 2017. "Robust Bayesian FDR Control Using Bayes Factors, with Applications to Multi-tissue eQTL Discovery," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(1), pages 28-49, June.
    17. Joshua Habiger & David Watts & Michael Anderson, 2017. "Multiple testing with heterogeneous multinomial distributions," Biometrics, The International Biometric Society, vol. 73(2), pages 562-570, June.
    18. Qingyun Cai & Hock Peng Chan, 2017. "A Double Application of the Benjamini-Hochberg Procedure for Testing Batched Hypotheses," Methodology and Computing in Applied Probability, Springer, vol. 19(2), pages 429-443, June.
    19. Guo Wenge & Peddada Shyamal, 2008. "Adaptive Choice of the Number of Bootstrap Samples in Large Scale Multiple Testing," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-21, March.
    20. Dazard, Jean-Eudes & Sunil Rao, J., 2012. "Joint adaptive mean–variance regularization and variance stabilization of high dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2317-2333.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:77:y:2025:i:4:d:10.1007_s10463-025-00930-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.