IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v30y2025i1d10.1007_s13253-023-00598-3.html
   My bibliography  Save this article

Animal Density Estimation for Large Unmarked Populations Using a Spatially Explicit Model

Author

Listed:
  • Riki Herliansyah

    (Kalimantan Institute of Technology
    University of Edinburgh)

  • Ruth King

    (University of Edinburgh)

  • Dede Aulia Rahman

    (Bogor Agricultural University
    Bogor Agricultural University)

  • Stuart King

    (University of Edinburgh)

Abstract

Obtaining abundance and density estimates is a particularly important aspect within wildlife conservation and management. To monitor wildlife populations, the use of motion-sensor camera traps is becoming increasing popular due to its non-invasive nature. However, animal identification is not always feasible in practice due to poor quality images and/or individuals not having uniquely identifiable physical characteristics. Spatially explicit models for unmarked individuals permit the estimation of animal density when individuals cannot be uniquely identified. Due to the structure of these models, a Bayesian super-population (data augmentation) approach is often used to fit the models to data, which involves specifying some reasonably large upper limit for the population. However, this approach presents substantial computational challenges for larger populations, as demonstrated by the motivating dataset relating to barking deer (Muntiacus muntjak) collected in Ujung Kulon National Park, Indonesia (with a population size in the low thousands). We develop a new and computationally efficient Bayesian algorithm for fitting the models to data that does not require specifying an upper population limit a priori. We apply the new algorithm to the large barking deer dataset, where the standard super-population approach is computationally expensive, and demonstrate a substantial improvement in computational efficiency.Supplementary material to this paper is provided online.

Suggested Citation

  • Riki Herliansyah & Ruth King & Dede Aulia Rahman & Stuart King, 2025. "Animal Density Estimation for Large Unmarked Populations Using a Spatially Explicit Model," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 30(1), pages 193-210, March.
  • Handle: RePEc:spr:jagbes:v:30:y:2025:i:1:d:10.1007_s13253-023-00598-3
    DOI: 10.1007/s13253-023-00598-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-023-00598-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-023-00598-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. E. Fienberg & M. S. Johnson & B. W. Junker, 1999. "Classical multilevel and Bayesian approaches to population size estimation using multiple lists," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 162(3), pages 383-405.
    2. R. King & S. P. Brooks, 2008. "On the Bayesian Estimation of a Closed Population Size in the Presence of Heterogeneity and Model Uncertainty," Biometrics, The International Biometric Society, vol. 64(3), pages 816-824, September.
    3. Richard J. Barker & Matthew R. Schofield & William A. Link & John R. Sauer, 2018. "On the reliability of N†mixture models for count data," Biometrics, The International Biometric Society, vol. 74(1), pages 369-377, March.
    4. Alex Diana & Eleni Matechou & Jim E. Griffin & Yadvendradev Jhala & Qamar Qureshi, 2022. "A vector of point processes for modeling interactions between and within species using capture‐recapture data," Environmetrics, John Wiley & Sons, Ltd., vol. 33(8), December.
    5. D. Dail & L. Madsen, 2011. "Models for Estimating Abundance from Repeated Counts of an Open Metapopulation," Biometrics, The International Biometric Society, vol. 67(2), pages 577-587, June.
    6. D. L. Borchers & M. G. Efford, 2008. "Spatially Explicit Maximum Likelihood Methods for Capture–Recapture Studies," Biometrics, The International Biometric Society, vol. 64(2), pages 377-385, June.
    7. Emily B. Dennis & Byron J.T. Morgan & Martin S. Ridout, 2015. "Computational aspects of N-mixture models," Biometrics, The International Biometric Society, vol. 71(1), pages 237-246, March.
    8. J. Andrew Royle, 2004. "N-Mixture Models for Estimating Population Size from Spatially Replicated Counts," Biometrics, The International Biometric Society, vol. 60(1), pages 108-115, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Perry J. Williams & Cody Schroeder & Pat Jackson, 2020. "Estimating Reproduction and Survival of Unmarked Juveniles Using Aerial Images and Marked Adults," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(2), pages 133-147, June.
    2. Rafael A. Moral & John Hinde & Clarice G. B. Demétrio & Carolina Reigada & Wesley A. C. Godoy, 2018. "Models for Jointly Estimating Abundances of Two Unmarked Site-Associated Species Subject to Imperfect Detection," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(1), pages 20-38, March.
    3. Mevin B. Hooten & Michael R. Schwob & Devin S. Johnson & Jacob S. Ivan, 2023. "Multistage hierarchical capture–recapture models," Environmetrics, John Wiley & Sons, Ltd., vol. 34(6), September.
    4. Steen, Valerie A. & Duarte, Adam & Peterson, James T., 2023. "An evaluation of multistate occupancy models for estimating relative abundance and population trends," Ecological Modelling, Elsevier, vol. 478(C).
    5. Adam Martin-Schwarze & Jarad Niemi & Philip Dixon, 2021. "Joint Modeling of Distances and Times in Point-Count Surveys," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(2), pages 289-305, June.
    6. Whitlock, Steven L. & Womble, Jamie N. & Peterson, James T., 2020. "Modelling pinniped abundance and distribution by combining counts at terrestrial sites and in-water sightings," Ecological Modelling, Elsevier, vol. 420(C).
    7. Xinhai Li & Ning Li & Baidu Li & Yuehua Sun & Erhu Gao, 2022. "AbundanceR: A Novel Method for Estimating Wildlife Abundance Based on Distance Sampling and Species Distribution Models," Land, MDPI, vol. 11(5), pages 1-13, April.
    8. Xinyi Lu & Mevin B. Hooten & Andee Kaplan & Jamie N. Womble & Michael R. Bower, 2022. "Improving Wildlife Population Inference Using Aerial Imagery and Entity Resolution," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(2), pages 364-381, June.
    9. Linda M. Haines, 2016. "Maximum likelihood estimation for N‐mixture models," Biometrics, The International Biometric Society, vol. 72(4), pages 1235-1245, December.
    10. Matthew R. P. Parker & Laura L. E. Cowen & Jiguo Cao & Lloyd T. Elliott, 2023. "Computational Efficiency and Precision for Replicated-Count and Batch-Marked Hidden Population Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(1), pages 43-58, March.
    11. Laura L. E. Cowen & Panagiotis Besbeas & Byron J. T. Morgan & Carl J. Schwarz, 2017. "Hidden Markov models for extended batch data," Biometrics, The International Biometric Society, vol. 73(4), pages 1321-1331, December.
    12. Simon J. Bonner & Wei Zhang & Jiaqi Mu, 2024. "On the identifiability of the trinomial model for mark‐recapture‐recovery studies," Environmetrics, John Wiley & Sons, Ltd., vol. 35(1), February.
    13. Richard J. Barker & Matthew R. Schofield & William A. Link & John R. Sauer, 2018. "On the reliability of N†mixture models for count data," Biometrics, The International Biometric Society, vol. 74(1), pages 369-377, March.
    14. Xiaoli Fan & Miguel I. Gómez & Shady S. Atallah & Jon M. Conrad, 2020. "A Bayesian State‐Space Approach for Invasive Species Management: The Case of Spotted Wing Drosophila," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(4), pages 1227-1244, August.
    15. Emily B. Dennis & Byron J.T. Morgan & Martin S. Ridout, 2015. "Computational aspects of N-mixture models," Biometrics, The International Biometric Society, vol. 71(1), pages 237-246, March.
    16. Richard Arnold & Yu Hayakawa & Paul Yip, 2010. "Capture–Recapture Estimation Using Finite Mixtures of Arbitrary Dimension," Biometrics, The International Biometric Society, vol. 66(2), pages 644-655, June.
    17. Duarte, Adam & Adams, Michael J. & Peterson, James T., 2018. "Fitting N-mixture models to count data with unmodeled heterogeneity: Bias, diagnostics, and alternative approaches," Ecological Modelling, Elsevier, vol. 374(C), pages 51-59.
    18. Francesco Bartolucci & Antonio Forcina, 2001. "Analysis of Capture-Recapture Data with a Rasch-Type Model Allowing for Conditional Dependence and Multidimensionality," Biometrics, The International Biometric Society, vol. 57(3), pages 714-719, September.
    19. D. L. Borchers & B. C. Stevenson & D. Kidney & L. Thomas & T. A. Marques, 2015. "A Unifying Model for Capture-Recapture and Distance Sampling Surveys of Wildlife Populations," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 195-204, March.
    20. repec:plo:pone00:0118851 is not listed on IDEAS
    21. Fienberg Stephen E., 2015. "Discussion," Journal of Official Statistics, Sciendo, vol. 31(3), pages 527-535, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:30:y:2025:i:1:d:10.1007_s13253-023-00598-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.