IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v29y2024i1d10.1007_s13253-023-00562-1.html
   My bibliography  Save this article

Spatially Clustered Survey Designs

Author

Listed:
  • Scott D. Foster

    (Data61 CSIRO)

  • Emma Lawrence

    (Data61 CSIRO)

  • Andrew J. Hoskins

    (CSIRO Environment)

Abstract

Direct observation, through surveys, underpins nearly all aspects of environmental sciences. Survey design theory has evolved to make sure that sampling is as efficient as possible whilst remaining robust and fit-for-purpose. However, these methods frequently focus on theoretical aspects and often increase the logistical difficulty of performing the survey. Usually, the survey design process will place individual sampling locations one-by-one throughout the sampling area (e.g. random sampling). A consequence of these approaches is that there is usually a large cost in travel time between locations. This can be a huge problem for surveys that are large in spatial scale or are in inhospitable environments where travel is difficult and/or costly. Our solution is to constrain the sampling process so that the sample consists of spatially clustered observations, with all sites within a cluster lying within a predefined distance. The spatial clustering is achieved by a two-stage sampling process: first cluster centres are sampled and then sites within clusters are sampled. A novelty of our approach is that these clusters are allowed to overlap and we present the necessary calculations required to adjust the specified inclusion probabilities so that they are respected in the clustered sample. The process is illustrated with a real and on-going large-scale ecological survey. We also present simulation results to assess the methods performance. Spatially clustered survey design provides a formal statistical framework for grouping sample sites in space whilst maintaining multiple levels of spatial-balance. These designs reduce the logistical burden placed on field workers by decreasing total travel time and logistical overheads.Supplementary materials accompanying this paper appear on-line.

Suggested Citation

  • Scott D. Foster & Emma Lawrence & Andrew J. Hoskins, 2024. "Spatially Clustered Survey Designs," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(1), pages 130-146, March.
  • Handle: RePEc:spr:jagbes:v:29:y:2024:i:1:d:10.1007_s13253-023-00562-1
    DOI: 10.1007/s13253-023-00562-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-023-00562-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-023-00562-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steven L Van Wilgenburg & C Lisa Mahon & Greg Campbell & Logan McLeod & Margaret Campbell & Dean Evans & Wendy Easton & Charles M Francis & Samuel Haché & Craig S Machtans & Caitlin Mader & Rhiannon F, 2020. "A cost efficient spatially balanced hierarchical sampling design for monitoring boreal birds incorporating access costs and habitat stratification," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-28, June.
    2. B. L. Robertson & J. A. Brown & T. McDonald & P. Jaksons, 2013. "BAS: Balanced Acceptance Sampling of Natural Resources," Biometrics, The International Biometric Society, vol. 69(3), pages 776-784, September.
    3. Anton Grafström & Niklas L. P. Lundström & Lina Schelin, 2012. "Spatially Balanced Sampling through the Pivotal Method," Biometrics, The International Biometric Society, vol. 68(2), pages 514-520, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robertson, Blair & Price, Chris, 2024. "One point per cluster spatially balanced sampling," Computational Statistics & Data Analysis, Elsevier, vol. 191(C).
    2. Robertson, B.L. & McDonald, T. & Price, C.J. & Brown, J.A., 2017. "A modification of balanced acceptance sampling," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 107-112.
    3. Wilmer Prentius, 2024. "Locally correlated Poisson sampling," Environmetrics, John Wiley & Sons, Ltd., vol. 35(2), March.
    4. Rosa M. Di Biase & Marzia Marcheselli & Caterina Pisani, 2025. "Achieving spatial balance in environmental surveys under constant inclusion probabilities or inclusion density functions," Environmetrics, John Wiley & Sons, Ltd., vol. 36(1), January.
    5. B. L. Robertson & O. Ozturk & O. Kravchuk & J. A. Brown, 2022. "Spatially Balanced Sampling with Local Ranking," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(4), pages 622-639, December.
    6. Lorenzo Fattorini & Timothy G. Gregoire & Sara Trentini, 2018. "The Use of Calibration Weighting for Variance Estimation Under Systematic Sampling: Applications to Forest Cover Assessment," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(3), pages 358-373, September.
    7. Bardia Panahbehagh & Raphaël Jauslin & Yves Tillé, 2024. "A general stream sampling design," Computational Statistics, Springer, vol. 39(6), pages 2899-2924, September.
    8. Maxime Dumont & Guilhem Brunel & Paul Tresson & Jérôme Nespoulous & Hassan Boukcim & Marc Ducousso & Stéphane Boivin & Olivier Taugourdeau & Bruno Tisseyre, 2024. "Operational sampling designs for poorly accessible areas based on a multi-objective optimization method," Post-Print hal-04566087, HAL.
    9. Xin Zhao & Anton Grafström, 2020. "A sample coordination method to monitor totals of environmental variables," Environmetrics, John Wiley & Sons, Ltd., vol. 31(6), September.
    10. Linda Altieri & Daniela Cocchi, 2021. "Spatial Sampling for Non‐compact Patterns," International Statistical Review, International Statistical Institute, vol. 89(3), pages 532-549, December.
    11. Schelin, Lina & Sjöstedt-de Luna, Sara, 2014. "Spatial prediction in the presence of left-censoring," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 125-141.
    12. Guillaume Chauvet & Ronan Le Gleut, 2021. "Inference under pivotal sampling: Properties, variance estimation, and application to tesselation for spatial sampling," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 108-131, March.
    13. Yves Tillé, 2022. "Some Solutions Inspired by Survey Sampling Theory to Build Effective Clinical Trials," International Statistical Review, International Statistical Institute, vol. 90(3), pages 481-498, December.
    14. Lorenzo Fattorini & Alberto Meriggi & Enrico Merli & Paolo Varuzza, 2020. "Sampling Strategies to Estimate Deer Density by Drive Counts," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(2), pages 168-185, June.
    15. Sara Franceschi & Gianni Betti & Lorenzo Fattorini & Francesca Gagliardi & Gianni Montrone, 2022. "Balanced sampling of boxes from batches for assessing quality of fruits and vegetables in EU countries," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(4), pages 2821-2839, August.
    16. ak Tomasz B, 2021. "Spatial sampling methods modified by model use," Statistics in Transition New Series, Statistics Poland, vol. 22(2), pages 143-154, June.
    17. Tomasz Bąk, 2021. "Spatial sampling methods modified by model use," Statistics in Transition New Series, Polish Statistical Association, vol. 22(2), pages 143-154, June.
    18. Pommerening, Arne & Szmyt, Janusz & Zhang, Gongqiao, 2020. "A new nearest-neighbour index for monitoring spatial size diversity: The hyperbolic tangent index," Ecological Modelling, Elsevier, vol. 435(C).
    19. Raphaël Jauslin & Bardia Panahbehagh & Yves Tillé, 2022. "Sequential spatially balanced sampling," Environmetrics, John Wiley & Sons, Ltd., vol. 33(8), December.
    20. G. Alleva & G. Arbia & P. D. Falorsi & V. Nardelli & A. Zuliani, 2023. "Optimal two-stage spatial sampling design for estimating critical parameters of SARS-CoV-2 epidemic: Efficiency versus feasibility," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(3), pages 983-999, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:29:y:2024:i:1:d:10.1007_s13253-023-00562-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.