IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v36y2025i1ne2869.html
   My bibliography  Save this article

Achieving spatial balance in environmental surveys under constant inclusion probabilities or inclusion density functions

Author

Listed:
  • Rosa M. Di Biase
  • Marzia Marcheselli
  • Caterina Pisani

Abstract

In environmental and ecological surveys, well spread samples can be easily obtained via widely adopted tessellation schemes, which yield equal first‐order inclusion probabilities in the case of finite populations of areas or constant inclusion density functions in the case of continuous populations. In the literature, many alternative schemes that are explicitly tailored to select well spread samples have been proposed, but owing to their complexity, their use should be preferred only if they allow us to achieve a valuable gain in precision with respect to the tessellation schemes. Therefore, by means of an extensive simulation study, the performances of tessellation schemes and several specifically tailored schemes are compared under constant first‐order inclusion probabilities or constant inclusion density functions.

Suggested Citation

  • Rosa M. Di Biase & Marzia Marcheselli & Caterina Pisani, 2025. "Achieving spatial balance in environmental surveys under constant inclusion probabilities or inclusion density functions," Environmetrics, John Wiley & Sons, Ltd., vol. 36(1), January.
  • Handle: RePEc:wly:envmet:v:36:y:2025:i:1:n:e2869
    DOI: 10.1002/env.2869
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2869
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2869?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cordy, Clifford B., 1993. "An extension of the Horvitz--Thompson theorem to point sampling from a continuous universe," Statistics & Probability Letters, Elsevier, vol. 18(5), pages 353-362, December.
    2. L Fattorini & M Marcheselli & C Pisani & L Pratelli, 2018. "Design-based maps for continuous spatial populations," Biometrika, Biometrika Trust, vol. 105(2), pages 419-429.
    3. Robertson, B.L. & McDonald, T. & Price, C.J. & Brown, J.A., 2017. "A modification of balanced acceptance sampling," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 107-112.
    4. Lennart Bondesson & Daniel Thorburn, 2008. "A List Sequential Sampling Method Suitable for Real‐Time Sampling," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(3), pages 466-483, September.
    5. L. Fattorini & M. Marcheselli & L. Pratelli, 2018. "Design-Based Maps for Finite Populations of Spatial Units," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 686-697, April.
    6. B. L. Robertson & J. A. Brown & T. McDonald & P. Jaksons, 2013. "BAS: Balanced Acceptance Sampling of Natural Resources," Biometrics, The International Biometric Society, vol. 69(3), pages 776-784, September.
    7. Anton Grafström & Niklas L. P. Lundström & Lina Schelin, 2012. "Spatially Balanced Sampling through the Pivotal Method," Biometrics, The International Biometric Society, vol. 68(2), pages 514-520, June.
    8. Anton Grafström & Yves Tillé, 2013. "Doubly balanced spatial sampling with spreading and restitution of auxiliary totals," Environmetrics, John Wiley & Sons, Ltd., vol. 24(2), pages 120-131, March.
    9. Stevens, Don L. & Olsen, Anthony R., 2004. "Spatially Balanced Sampling of Natural Resources," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 262-278, January.
    10. Lorenzo Fattorini, 2006. "Applying the Horvitz-Thompson criterion in complex designs: A computer-intensive perspective for estimating inclusion probabilities," Biometrika, Biometrika Trust, vol. 93(2), pages 269-278, June.
    11. Anton Grafström & Lina Schelin, 2014. "How to Select Representative Samples," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 277-290, June.
    12. Raphaël Jauslin & Yves Tillé, 2020. "Spatial Spread Sampling Using Weakly Associated Vectors," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 431-451, September.
    13. A. Grafström & S. Schnell & S. Saarela & S. P. Hubbell & R. Condit, 2017. "The continuous population approach to forest inventories and use of information in the design," Environmetrics, John Wiley & Sons, Ltd., vol. 28(8), December.
    14. Anton Grafström & Alina Matei, 2018. "Spatially Balanced Sampling of Continuous Populations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 45(3), pages 792-805, September.
    15. Jean-Claude Deville & Yves Tille, 2004. "Efficient balanced sampling: The cube method," Biometrika, Biometrika Trust, vol. 91(4), pages 893-912, December.
    16. Roberto Benedetti & Federica Piersimoni & Paolo Postiglione, 2017. "Spatially Balanced Sampling: A Review and A Reappraisal," International Statistical Review, International Statistical Institute, vol. 85(3), pages 439-454, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robertson, Blair & Price, Chris, 2024. "One point per cluster spatially balanced sampling," Computational Statistics & Data Analysis, Elsevier, vol. 191(C).
    2. Wilmer Prentius, 2024. "Locally correlated Poisson sampling," Environmetrics, John Wiley & Sons, Ltd., vol. 35(2), March.
    3. Xin Zhao & Anton Grafström, 2020. "A sample coordination method to monitor totals of environmental variables," Environmetrics, John Wiley & Sons, Ltd., vol. 31(6), September.
    4. Tomasz Bąk, 2021. "Spatial sampling methods modified by model use," Statistics in Transition New Series, Polish Statistical Association, vol. 22(2), pages 143-154, June.
    5. Raphaël Jauslin & Bardia Panahbehagh & Yves Tillé, 2022. "Sequential spatially balanced sampling," Environmetrics, John Wiley & Sons, Ltd., vol. 33(8), December.
    6. Sara Franceschi & Rosa Maria Di Biase & Agnese Marcelli & Lorenzo Fattorini, 2022. "Some Empirical Results on Nearest-Neighbour Pseudo-populations for Resampling from Spatial Populations," Stats, MDPI, vol. 5(2), pages 1-16, April.
    7. Yves Tillé, 2022. "Some Solutions Inspired by Survey Sampling Theory to Build Effective Clinical Trials," International Statistical Review, International Statistical Institute, vol. 90(3), pages 481-498, December.
    8. Raphaël Jauslin & Yves Tillé, 2020. "Spatial Spread Sampling Using Weakly Associated Vectors," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 431-451, September.
    9. ak Tomasz B, 2021. "Spatial sampling methods modified by model use," Statistics in Transition New Series, Statistics Poland, vol. 22(2), pages 143-154, June.
    10. G. Alleva & G. Arbia & P. D. Falorsi & V. Nardelli & A. Zuliani, 2023. "Optimal two-stage spatial sampling design for estimating critical parameters of SARS-CoV-2 epidemic: Efficiency versus feasibility," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(3), pages 983-999, September.
    11. Linda Altieri & Daniela Cocchi, 2021. "Spatial Sampling for Non‐compact Patterns," International Statistical Review, International Statistical Institute, vol. 89(3), pages 532-549, December.
    12. B. L. Robertson & O. Ozturk & O. Kravchuk & J. A. Brown, 2022. "Spatially Balanced Sampling with Local Ranking," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(4), pages 622-639, December.
    13. Lorenzo Fattorini & Marzia Marcheselli & Caterina Pisani & Luca Pratelli, 2022. "Design‐based properties of the nearest neighbor spatial interpolator and its bootstrap mean squared error estimator," Biometrics, The International Biometric Society, vol. 78(4), pages 1454-1463, December.
    14. Xin Zhao & Anton Grafström, 2024. "Estimation of change with partially overlapping and spatially balanced samples," Environmetrics, John Wiley & Sons, Ltd., vol. 35(1), February.
    15. R. Benedetti & F. Piersimoni & P. Postiglione, 2017. "Alternative and complementary approaches to spatially balanced samples," METRON, Springer;Sapienza Università di Roma, vol. 75(3), pages 249-264, December.
    16. Robertson, B.L. & Reale, M. & Price, C.J. & Brown, J.A., 2021. "Quasi-random ranked set sampling," Statistics & Probability Letters, Elsevier, vol. 171(C).
    17. Roberto Benedetti & Federica Piersimoni & Paolo Postiglione, 2017. "Spatially Balanced Sampling: A Review and A Reappraisal," International Statistical Review, International Statistical Institute, vol. 85(3), pages 439-454, December.
    18. Lorenzo Fattorini & Timothy G. Gregoire & Sara Trentini, 2018. "The Use of Calibration Weighting for Variance Estimation Under Systematic Sampling: Applications to Forest Cover Assessment," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(3), pages 358-373, September.
    19. Huan Xie & Fang Wang & Yali Gong & Xiaohua Tong & Yanmin Jin & Ang Zhao & Chao Wei & Xinyi Zhang & Shicheng Liao, 2022. "Spatially Balanced Sampling for Validation of GlobeLand30 Using Landscape Pattern-Based Inclusion Probability," Sustainability, MDPI, vol. 14(5), pages 1-19, February.
    20. B. L. Robertson & J. A. Brown & T. McDonald & P. Jaksons, 2013. "BAS: Balanced Acceptance Sampling of Natural Resources," Biometrics, The International Biometric Society, vol. 69(3), pages 776-784, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:36:y:2025:i:1:n:e2869. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.