IDEAS home Printed from https://ideas.repec.org/a/spr/infosf/v19y2017i4d10.1007_s10796-016-9635-0.html
   My bibliography  Save this article

Geometry-based propagation of temporal constraints

Author

Listed:
  • Zhaoyu Li

    (Beijing Institute of Technology)

  • Rui Xu

    (Beijing Institute of Technology)

  • Pingyuan Cui

    (Beijing Institute of Technology)

  • Lida Xu

    (Chinese Academy of Sciences
    Old Dominion University)

  • Wu He

    (Old Dominion University)

Abstract

In recent years, the Internet of Things (IoT) has been introduced to offer promising solutions in many areas. A big challenge faced by the IoT is to integrate heterogeneous information sources and process information effectively. As an important element in information integration, temporal reasoning is highly related to the dynamic, sequential aspect of both the information integration and the decision making process. Focusing on temporal reasoning, this paper introduces a method to represent both qualitative and quantitative temporal constraints in a 2-dimensional (2-D) space. Meanwhile, an efficient constraint-based geometric (CG) algorithm for propagating constraints (including inherent constraints and constraint pairs) on events in a 2-D space is proposed. A geometric recombination and intersection (GRI) method, a part of the CG algorithm, is presented to propagate one constraint pair from a geometric point. The experimental results show that in terms of both constructed and realistic benchmarks, the CG algorithm outperforms the existing Floyd-Warshall’s algorithm with the time complexity of O(n 3), especially for benchmarks with a large number of events.

Suggested Citation

  • Zhaoyu Li & Rui Xu & Pingyuan Cui & Lida Xu & Wu He, 2017. "Geometry-based propagation of temporal constraints," Information Systems Frontiers, Springer, vol. 19(4), pages 855-868, August.
  • Handle: RePEc:spr:infosf:v:19:y:2017:i:4:d:10.1007_s10796-016-9635-0
    DOI: 10.1007/s10796-016-9635-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10796-016-9635-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10796-016-9635-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrew Whitmore & Anurag Agarwal & Li Xu, 2015. "The Internet of Things—A survey of topics and trends," Information Systems Frontiers, Springer, vol. 17(2), pages 261-274, April.
    2. Payam Barnaghi & Wei Wang & Cory Henson & Kerry Taylor, 2012. "Semantics for the Internet of Things: Early Progress and Back to the Future," International Journal on Semantic Web and Information Systems (IJSWIS), IGI Global, vol. 8(1), pages 1-21, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qinghua Zheng & Chutong Yang & Haijun Yang & Jianhe Zhou, 2020. "A Fast Exact Algorithm for Deployment of Sensor Nodes for Internet of Things," Information Systems Frontiers, Springer, vol. 22(4), pages 829-842, August.
    2. Damminda Alahakoon & Rashmika Nawaratne & Yan Xu & Daswin Silva & Uthayasankar Sivarajah & Bhumika Gupta, 2023. "Self-Building Artificial Intelligence and Machine Learning to Empower Big Data Analytics in Smart Cities," Information Systems Frontiers, Springer, vol. 25(1), pages 221-240, February.
    3. Vasja Roblek & Maja Meško & Alojz Krapež, 2016. "A Complex View of Industry 4.0," SAGE Open, , vol. 6(2), pages 21582440166, June.
    4. Peter M. Bednar & Christine Welch, 0. "Socio-Technical Perspectives on Smart Working: Creating Meaningful and Sustainable Systems," Information Systems Frontiers, Springer, vol. 0, pages 1-18.
    5. Gergely Marcell Honti & Janos Abonyi, 2019. "A Review of Semantic Sensor Technologies in Internet of Things Architectures," Complexity, Hindawi, vol. 2019, pages 1-21, June.
    6. Qinglan Liu & Adriana Hofmann Trevisan & Miying Yang & Janaina Mascarenhas, 2022. "A framework of digital technologies for the circular economy: Digital functions and mechanisms," Business Strategy and the Environment, Wiley Blackwell, vol. 31(5), pages 2171-2192, July.
    7. Federica Cena & Luca Console & Assunta Matassa & Ilaria Torre, 2019. "Multi-dimensional intelligence in smart physical objects," Information Systems Frontiers, Springer, vol. 21(2), pages 383-404, April.
    8. Payam Hanafizadeh & Ferdos Hatami Lankarani & Shahrokh Nikou, 2022. "Perspectives on management theory’s application in the internet of things research," Information Systems and e-Business Management, Springer, vol. 20(4), pages 749-787, December.
    9. Shang, Juan & Li, Pengfei & Li, Ling & Chen, Yong, 2018. "The relationship between population growth and capital allocation in urbanization," Technological Forecasting and Social Change, Elsevier, vol. 135(C), pages 249-256.
    10. Belfiore, Alessandra & Cuccurullo, Corrado & Aria, Massimo, 2022. "IoT in healthcare: A scientometric analysis," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    11. Asadi, Shahla & Nilashi, Mehrbakhsh & Iranmanesh, Mohammad & Hyun, Sunghyup Sean & Rezvani, Azadeh, 2022. "Effect of internet of things on manufacturing performance: A hybrid multi-criteria decision-making and neuro-fuzzy approach," Technovation, Elsevier, vol. 118(C).
    12. Takano, Yasutomo & Kajikawa, Yuya, 2019. "Extracting commercialization opportunities of the Internet of Things: Measuring text similarity between papers and patents," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 45-68.
    13. Dameri, Renata Paola & Benevolo, Clara & Veglianti, Eleonora & Li, Yaya, 2019. "Understanding smart cities as a glocal strategy: A comparison between Italy and China," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 26-41.
    14. Lv, Yulin & Gong, Feng & Li, Hao & Zhou, Qiang & Wu, Xinlin & Wang, Wenbin & Xiao, Rui, 2020. "A flexible electrokinetic power generator derived from paper and ink for wearable electronics," Applied Energy, Elsevier, vol. 279(C).
    15. Alraja, Mansour, 2022. "Frontline healthcare providers’ behavioural intention to Internet of Things (IoT)-enabled healthcare applications: A gender-based, cross-generational study," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    16. Emilia Ingemarsdotter & Ella Jamsin & Gerd Kortuem & Ruud Balkenende, 2019. "Circular Strategies Enabled by the Internet of Things—A Framework and Analysis of Current Practice," Sustainability, MDPI, vol. 11(20), pages 1-37, October.
    17. Cranmer, Eleanor E. & Papalexi, M. & tom Dieck, M. Claudia & Bamford, D., 2022. "Internet of Things: Aspiration, implementation and contribution," Journal of Business Research, Elsevier, vol. 139(C), pages 69-80.
    18. Abhishek Majumdar & Tapas Debnath & Arpita Biswas & Sandeep K. Sood & Krishna Lal Baishnab, 0. "An Energy Efficient e-Healthcare Framework Supported by Novel EO-μGA (Extremal Optimization Tuned Micro-Genetic Algorithm)," Information Systems Frontiers, Springer, vol. 0, pages 1-18.
    19. Abderahman Rejeb & John G. Keogh & Wayne Martindale & Damion Dooley & Edward Smart & Steven Simske & Samuel Fosso Wamba & John G. Breslin & Kosala Yapa Bandara & Subhasis Thakur & Kelly Liu & Bridgett, 2022. "Charting Past, Present, and Future Research in the Semantic Web and Interoperability," Future Internet, MDPI, vol. 14(6), pages 1-32, May.
    20. Kristoffersen, Eivind & Blomsma, Fenna & Mikalef, Patrick & Li, Jingyue, 2020. "The smart circular economy: A digital-enabled circular strategies framework for manufacturing companies," Journal of Business Research, Elsevier, vol. 120(C), pages 241-261.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infosf:v:19:y:2017:i:4:d:10.1007_s10796-016-9635-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.