IDEAS home Printed from https://ideas.repec.org/a/spr/indpam/v47y2016i1d10.1007_s13226-015-0162-3.html
   My bibliography  Save this article

Inertial proximal algorithm for difference of two maximal monotone operators

Author

Listed:
  • M. Alimohammady

    (University of Mazandaran)

  • M. Ramazannejad

    (University of Mazandaran)

Abstract

In this note, a new algorithm is presented for finding a zero of difference of two maximal monotone operators T and S, i.e., T — S in finite dimensional real Hilbert space H in which operator S has local boundedness property. This condition is weaker than Moudafi’s condition on operator S in [13]. Moreover, applying some conditions on inertia term in new algorithm, one can improve speed of convergence of sequence.

Suggested Citation

  • M. Alimohammady & M. Ramazannejad, 2016. "Inertial proximal algorithm for difference of two maximal monotone operators," Indian Journal of Pure and Applied Mathematics, Springer, vol. 47(1), pages 1-8, March.
  • Handle: RePEc:spr:indpam:v:47:y:2016:i:1:d:10.1007_s13226-015-0162-3
    DOI: 10.1007/s13226-015-0162-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13226-015-0162-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13226-015-0162-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. S. Huda & Rahul Mukerjee, 2010. "Minimax second-order designs over cuboidal regions for the difference between two estimated responses," Indian Journal of Pure and Applied Mathematics, Springer, vol. 41(1), pages 303-312, February.
    2. Le An & Pham Tao, 2005. "The DC (Difference of Convex Functions) Programming and DCA Revisited with DC Models of Real World Nonconvex Optimization Problems," Annals of Operations Research, Springer, vol. 133(1), pages 23-46, January.
    3. Deng Lei & Li Shenghong, 2000. "Ishikawa iteration process with errors for nonexpansive mappings in uniformly convex Banach spaces," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 24, pages 1-5, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. João S. Andrade & Jurandir de O. Lopes & João Carlos de O. Souza, 2023. "An inertial proximal point method for difference of maximal monotone vector fields in Hadamard manifolds," Journal of Global Optimization, Springer, vol. 85(4), pages 941-968, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pietro D’Alessandro & Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2024. "The Descent–Ascent Algorithm for DC Programming," INFORMS Journal on Computing, INFORMS, vol. 36(2), pages 657-671, March.
    2. Min Tao & Jiang-Ning Li, 2023. "Error Bound and Isocost Imply Linear Convergence of DCA-Based Algorithms to D-Stationarity," Journal of Optimization Theory and Applications, Springer, vol. 197(1), pages 205-232, April.
    3. J. X. Cruz Neto & P. R. Oliveira & A. Soubeyran & J. C. O. Souza, 2020. "A generalized proximal linearized algorithm for DC functions with application to the optimal size of the firm problem," Annals of Operations Research, Springer, vol. 289(2), pages 313-339, June.
    4. Tao Pham Dinh & Yi-Shuai Niu, 2011. "An efficient DC programming approach for portfolio decision with higher moments," Computational Optimization and Applications, Springer, vol. 50(3), pages 525-554, December.
    5. Joaquim Júdice, 2012. "Algorithms for linear programming with linear complementarity constraints," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(1), pages 4-25, April.
    6. Hoai An Le Thi & Van Ngai Huynh & Tao Pham Dinh, 2018. "Convergence Analysis of Difference-of-Convex Algorithm with Subanalytic Data," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 103-126, October.
    7. João Carlos O. Souza & Paulo Roberto Oliveira & Antoine Soubeyran, 2016. "Global convergence of a proximal linearized algorithm for difference of convex functions," Post-Print hal-01440298, HAL.
    8. A. B. Dieker & S. Ghosh & M. S. Squillante, 2017. "Optimal Resource Capacity Management for Stochastic Networks," Operations Research, INFORMS, vol. 65(1), pages 221-241, February.
    9. Yuan, Quan & Liu, Binghui, 2021. "Community detection via an efficient nonconvex optimization approach based on modularity," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    10. Laura Girometti & Martin Huska & Alessandro Lanza & Serena Morigi, 2024. "Convex Predictor–Nonconvex Corrector Optimization Strategy with Application to Signal Decomposition," Journal of Optimization Theory and Applications, Springer, vol. 202(3), pages 1286-1325, September.
    11. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2022. "Essentials of numerical nonsmooth optimization," Annals of Operations Research, Springer, vol. 314(1), pages 213-253, July.
    12. Hoai Le Thi & Van Huynh & Tao Dinh & A. Vaz & L. Vicente, 2014. "Globally convergent DC trust-region methods," Journal of Global Optimization, Springer, vol. 59(2), pages 209-225, July.
    13. F. Mashkoorzadeh & N. Movahedian & S. Nobakhtian, 2022. "The DTC (difference of tangentially convex functions) programming: optimality conditions," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 270-295, July.
    14. Gruzdeva, Tatiana V. & Strekalovsky, Alexander S., 2018. "On solving the sum-of-ratios problem," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 260-269.
    15. Crystal T. Nguyen & Daniel J. Luckett & Anna R. Kahkoska & Grace E. Shearrer & Donna Spruijt‐Metz & Jaimie N. Davis & Michael R. Kosorok, 2020. "Estimating individualized treatment regimes from crossover designs," Biometrics, The International Biometric Society, vol. 76(3), pages 778-788, September.
    16. Hoai An, Le Thi & Minh, Le Hoai & Tao, Pham Dinh, 2007. "Optimization based DC programming and DCA for hierarchical clustering," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1067-1085, December.
    17. M. Bierlaire & M. Thémans & N. Zufferey, 2010. "A Heuristic for Nonlinear Global Optimization," INFORMS Journal on Computing, INFORMS, vol. 22(1), pages 59-70, February.
    18. Ming Huang & Li-Ping Pang & Zun-Quan Xia, 2014. "The space decomposition theory for a class of eigenvalue optimizations," Computational Optimization and Applications, Springer, vol. 58(2), pages 423-454, June.
    19. Songnian He & Qiao-Li Dong & Michael Th. Rassias, 2025. "Contractive Difference-of-Convex Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 206(1), pages 1-21, July.
    20. Bai, Jushan & Liao, Yuan, 2016. "Efficient estimation of approximate factor models via penalized maximum likelihood," Journal of Econometrics, Elsevier, vol. 191(1), pages 1-18.

    More about this item

    Keywords

    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:indpam:v:47:y:2016:i:1:d:10.1007_s13226-015-0162-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.