IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v8y2017i1d10.1007_s13198-015-0400-4.html
   My bibliography  Save this article

Wavelet transform and neural network techniques for inter-turn short circuit diagnosis and location in induction motor

Author

Listed:
  • Besma Bessam

    (University of Biskra)

  • Arezki Menacer

    (University of Biskra)

  • Mohamed Boumehraz

    (University of Biskra)

  • Hakima Cherif

    (University of El-Oued)

Abstract

It is well known that stator winding faults such the inter-turn short circuit are the most frequent source of breakdowns in induction motors. Early detection of any small inter-turn short circuit and location of the faulty phase at different load would eliminate some subsequent damage to adjacent coils and stator core, reducing then the repair cost. To achieve this purpose, the present paper presents a new method of diagnosis and detection of inter turn short circuit fault using discrete wavelet transform (DWT) and neural networks (NN). This method consists in analyzing the stator current by DWT in order to compute the energy associated with the stator fault in the frequency bandwidth. Then, this energy is used as input for a NN classifier. The results obtained are astonishing and the approach is able to detect any small number of shorted turns and the faulty phase even under different load of the machine.

Suggested Citation

  • Besma Bessam & Arezki Menacer & Mohamed Boumehraz & Hakima Cherif, 2017. "Wavelet transform and neural network techniques for inter-turn short circuit diagnosis and location in induction motor," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(1), pages 478-488, January.
  • Handle: RePEc:spr:ijsaem:v:8:y:2017:i:1:d:10.1007_s13198-015-0400-4
    DOI: 10.1007/s13198-015-0400-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-015-0400-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-015-0400-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kowalski, Czeslaw T & Orlowska-Kowalska, Teresa, 2003. "Neural networks application for induction motor faults diagnosis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 63(3), pages 435-448.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cherif, Hakima & Benakcha, Abdelhamid & Laib, Ismail & Chehaidia, Seif Eddine & Menacer, Arezky & Soudan, Bassel & Olabi, A.G., 2020. "Early detection and localization of stator inter-turn faults based on discrete wavelet energy ratio and neural networks in induction motor," Energy, Elsevier, vol. 212(C).
    2. Swapnil K. Gundewar & Prasad V. Kane, 2022. "Rolling element bearing fault diagnosis using supervised learning methods- artificial neural network and discriminant classifier," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 2876-2894, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vikas Singh & Purushottam Gangsar & Rajkumar Porwal & A. Atulkar, 2023. "Artificial intelligence application in fault diagnostics of rotating industrial machines: a state-of-the-art review," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 931-960, March.
    2. Maciej Skowron & Teresa Orlowska-Kowalska & Marcin Wolkiewicz & Czeslaw T. Kowalski, 2020. "Convolutional Neural Network-Based Stator Current Data-Driven Incipient Stator Fault Diagnosis of Inverter-Fed Induction Motor," Energies, MDPI, vol. 13(6), pages 1-21, March.
    3. Maciej Skowron & Marcin Wolkiewicz & Teresa Orlowska-Kowalska & Czeslaw T. Kowalski, 2019. "Effectiveness of Selected Neural Network Structures Based on Axial Flux Analysis in Stator and Rotor Winding Incipient Fault Detection of Inverter-fed Induction Motors," Energies, MDPI, vol. 12(12), pages 1-20, June.
    4. Ana L. Martinez-Herrera & Edna R. Ferrucho-Alvarez & Luis M. Ledesma-Carrillo & Ruth I. Mata-Chavez & Misael Lopez-Ramirez & Eduardo Cabal-Yepez, 2022. "Multiple Fault Detection in Induction Motors through Homogeneity and Kurtosis Computation," Energies, MDPI, vol. 15(4), pages 1-11, February.
    5. Bouzid, M. & Champenois, G., 2013. "An efficient, simplified multiple-coupled circuit model of the induction motor aimed to simulate different types of stator faults," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 90(C), pages 98-115.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:8:y:2017:i:1:d:10.1007_s13198-015-0400-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.