IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v14y2023i6d10.1007_s13198-023-02066-0.html
   My bibliography  Save this article

Sensitive crop leaf disease prediction based on computer vision techniques with handcrafted features

Author

Listed:
  • Manoj A. Patil

    (Christ(Deemed to be University) School of Engineering and Technology
    G. Narayanamma Institute of Technology and Science)

  • Manohar Manur

    (Christ(Deemed to be University) School of Engineering and Technology)

Abstract

Agricultural production is considered the primary source of the economy of many countries. Tomato and Potatoes are the most sensitive and consumable vegetables worldwide. However, during the growth of these crops, they suffer from many leaf diseases, which lead to loss of productivity and economy of the farmers. Many farmers detect and find plant diseases that are more time-consuming, expensive, and require expert decisions following the naked eye method. Therefore, early and accurate diagnosis of Tomato and Potato crops leaf diseases plays a vital role in sustainable agriculture. So, this research paper proposes an efficient leaf disease classification model based on computer vision techniques. The proposed Adaptive Deep Neural Network (ADNN) leaf disease classification method is a hybrid model which combines an optimized long short-term memory (OLSTM) and convolution neural network (CNN). The weight values supplied in the LSTM classifier are optimally selected using the Adaptive Raindrop Optimization algorithm. The handcrafted features are extracted from the segmented image and fused with the hybrid deep neural network to improve the classifier performance. The ADNN method consists of five steps: preprocessing, feature extraction, segmentation, handcrafted feature extraction, and classification. At first, the images are given to the preprocessing stage to remove the noise from leaf images. Then, the image-affected portion is segmented using an enhanced radial basis function neural network. After the segmentation process, the segmented image is given as an input to the adaptive deep neural network (ADNN) that classifies various types of diseases in the Potato and Tomato leaves. The efficiency of the ADNN model based on the OLSTM-CNN approach is determined concerning multiple metrics, namely Accuracy, Precision, Recall, F-measure, Specificity, and Sensitivity. The ADNN model achieved the best Accuracy of 98.02% for Tomatoes and 98% for Potatoes. The ADNN is compared with existing state-of-the-art CNN, LSTM, ResNet50, and MobileNet techniques. The performance analysis proved that the ADNN model improved efficiency in terms of all metrics and methods.

Suggested Citation

  • Manoj A. Patil & Manohar Manur, 2023. "Sensitive crop leaf disease prediction based on computer vision techniques with handcrafted features," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(6), pages 2235-2266, December.
  • Handle: RePEc:spr:ijsaem:v:14:y:2023:i:6:d:10.1007_s13198-023-02066-0
    DOI: 10.1007/s13198-023-02066-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-023-02066-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-023-02066-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    ADNN; OLSTM-CNN; CNN; LSTM; ARDO;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:14:y:2023:i:6:d:10.1007_s13198-023-02066-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.