IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i3p737-d1104365.html
   My bibliography  Save this article

EffiMob-Net: A Deep Learning-Based Hybrid Model for Detection and Identification of Tomato Diseases Using Leaf Images

Author

Listed:
  • Zahid Ullah

    (Department of Information Systems, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Najah Alsubaie

    (Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 84428, Saudi Arabia)

  • Mona Jamjoom

    (Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 84428, Saudi Arabia)

  • Samah H. Alajmani

    (Department of Information Technology, College of Computers and Information Technology, Taif University, Taif 21944, Saudi Arabia)

  • Farrukh Saleem

    (Department of Information Systems, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

Abstract

As tomatoes are the most consumed vegetable in the world, production should be increased to fulfill the vast demand for this vegetable. Global warming, climate changes, and other significant factors, including pests, badly affect tomato plants and cause various diseases that ultimately affect the production of this vegetable. Several strategies and techniques have been adopted for detecting and averting such diseases to ensure the survival of tomato plants. Recently, the application of artificial intelligence (AI) has significantly contributed to agronomy in the detection of tomato plant diseases through leaf images. Deep learning (DL)-based techniques have been largely utilized for detecting tomato leaf diseases. This paper proposes a hybrid DL-based approach for detecting tomato plant diseases through leaf images. To accomplish the task, this study presents the fusion of two pretrained models, namely, EfficientNetB3 and MobileNet (referred to as the EffiMob-Net model) to detect tomato leaf diseases accurately. In addition, model overfitting was handled using various techniques, such as regularization, dropout, and batch normalization (BN). Hyperparameter tuning was performed to choose the optimal parameters for building the best-fitting model. The proposed hybrid EffiMob-Net model was tested on a plant village dataset containing tomato leaf disease and healthy images. This hybrid model was evaluated based on the best classifier with respect to accuracy metrics selected for detecting the diseases. The success rate of the proposed hybrid model for accurately detecting tomato leaf diseases reached 99.92%, demonstrating the model’s ability to extract features accurately. This finding shows the reliability of the proposed hybrid model as an automatic detector for tomato plant diseases that can significantly contribute to providing better solutions for detecting other crop diseases in the field of agriculture.

Suggested Citation

  • Zahid Ullah & Najah Alsubaie & Mona Jamjoom & Samah H. Alajmani & Farrukh Saleem, 2023. "EffiMob-Net: A Deep Learning-Based Hybrid Model for Detection and Identification of Tomato Diseases Using Leaf Images," Agriculture, MDPI, vol. 13(3), pages 1-13, March.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:3:p:737-:d:1104365
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/3/737/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/3/737/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shengyi Zhao & Yun Peng & Jizhan Liu & Shuo Wu, 2021. "Tomato Leaf Disease Diagnosis Based on Improved Convolution Neural Network by Attention Module," Agriculture, MDPI, vol. 11(7), pages 1-15, July.
    2. Anil Bhujel & Na-Eun Kim & Elanchezhian Arulmozhi & Jayanta Kumar Basak & Hyeon-Tae Kim, 2022. "A Lightweight Attention-Based Convolutional Neural Networks for Tomato Leaf Disease Classification," Agriculture, MDPI, vol. 12(2), pages 1-18, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuzhe Bai & Fengjun Hou & Xinyuan Fan & Weifan Lin & Jinghan Lu & Junyu Zhou & Dongchen Fan & Lin Li, 2023. "A Lightweight Pest Detection Model for Drones Based on Transformer and Super-Resolution Sampling Techniques," Agriculture, MDPI, vol. 13(9), pages 1-23, September.
    2. Shenghao Ye & Xinyu Xue & Shuning Si & Yang Xu & Feixiang Le & Longfei Cui & Yongkui Jin, 2023. "Design and Testing of an Elastic Comb Reciprocating a Soybean Plant-to-Plant Seedling Avoidance and Weeding Device," Agriculture, MDPI, vol. 13(11), pages 1-23, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiang Zhang & Huiyi Gao & Li Wan, 2022. "Classification of Fine-Grained Crop Disease by Dilated Convolution and Improved Channel Attention Module," Agriculture, MDPI, vol. 12(10), pages 1-16, October.
    2. Yang Chen & Xiaoyulong Chen & Jianwu Lin & Renyong Pan & Tengbao Cao & Jitong Cai & Dianzhi Yu & Tomislav Cernava & Xin Zhang, 2022. "DFCANet: A Novel Lightweight Convolutional Neural Network Model for Corn Disease Identification," Agriculture, MDPI, vol. 12(12), pages 1-22, November.
    3. Taejoo Kim & Hyeongjun Kim & Kyeonghoon Baik & Yukyung Choi, 2022. "Instance-Aware Plant Disease Detection by Utilizing Saliency Map and Self-Supervised Pre-Training," Agriculture, MDPI, vol. 12(8), pages 1-16, July.
    4. Xia Hao & Man Zhang & Tianru Zhou & Xuchao Guo & Federico Tomasetto & Yuxin Tong & Minjuan Wang, 2021. "An Automatic Light Stress Grading Architecture Based on Feature Optimization and Convolutional Neural Network," Agriculture, MDPI, vol. 11(11), pages 1-17, November.
    5. Yanlei Xu & Shuolin Kong & Zongmei Gao & Qingyuan Chen & Yubin Jiao & Chenxiao Li, 2022. "HLNet Model and Application in Crop Leaf Diseases Identification," Sustainability, MDPI, vol. 14(14), pages 1-20, July.
    6. Jianwu Lin & Xiaoyulong Chen & Renyong Pan & Tengbao Cao & Jitong Cai & Yang Chen & Xishun Peng & Tomislav Cernava & Xin Zhang, 2022. "GrapeNet: A Lightweight Convolutional Neural Network Model for Identification of Grape Leaf Diseases," Agriculture, MDPI, vol. 12(6), pages 1-17, June.
    7. Yuan-Kai Tu & Chin-En Kuo & Shih-Lun Fang & Han-Wei Chen & Ming-Kun Chi & Min-Hwi Yao & Bo-Jein Kuo, 2022. "A 1D-SP-Net to Determine Early Drought Stress Status of Tomato ( Solanum lycopersicum ) with Imbalanced Vis/NIR Spectroscopy Data," Agriculture, MDPI, vol. 12(2), pages 1-17, February.
    8. Xianguo Ren & Haiqing Tian & Kai Zhao & Dapeng Li & Ziqing Xiao & Yang Yu & Fei Liu, 2022. "Research on pH Value Detection Method during Maize Silage Secondary Fermentation Based on Computer Vision," Agriculture, MDPI, vol. 12(10), pages 1-17, October.
    9. J. Dhakshayani & B. Surendiran, 2023. "M2F-Net: A Deep Learning-Based Multimodal Classification with High-Throughput Phenotyping for Identification of Overabundance of Fertilizers," Agriculture, MDPI, vol. 13(6), pages 1-19, June.
    10. Zhihua Hua & Haiyang Yu & Peng Jing & Caoyuan Song & Saifei Xie, 2023. "A Light-Weight Neural Network Using Multiscale Hybrid Attention for Building Change Detection," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    11. Li Zhang & Qun Hao & Jie Cao, 2023. "Attention-Based Fine-Grained Lightweight Architecture for Fuji Apple Maturity Classification in an Open-World Orchard Environment," Agriculture, MDPI, vol. 13(2), pages 1-20, January.
    12. Bharathwaaj Sundararaman & Siddhant Jagdev & Narendra Khatri, 2023. "Transformative Role of Artificial Intelligence in Advancing Sustainable Tomato ( Solanum lycopersicum ) Disease Management for Global Food Security: A Comprehensive Review," Sustainability, MDPI, vol. 15(15), pages 1-23, July.
    13. Dasen Li & Zhendong Yin & Yanlong Zhao & Wudi Zhao & Jiqing Li, 2023. "MLFAnet: A Tomato Disease Classification Method Focusing on OOD Generalization," Agriculture, MDPI, vol. 13(6), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:3:p:737-:d:1104365. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.