IDEAS home Printed from https://ideas.repec.org/a/spr/fuzodm/v23y2024i2d10.1007_s10700-024-09419-9.html
   My bibliography  Save this article

Nonparametric uncertain time series models: theory and application in brent crude oil spot price analysis

Author

Listed:
  • Yi Zhang

    (Renmin University of China)

  • Jinwu Gao

    (Ocean University of China)

Abstract

Uncertain time series models constitute a pivotal tool for analyzing phenomena evolving over time. However, most of the prevailing research centers on parameter models, which exhibit limitations in addressing intricate temporal dynamics. To address this gap, this paper introduces a non-parametric uncertain time series model. Primarily, we propose the definition of the non-parametric uncertain time series models. Subsequently, tailored to the non-parametric uncertain additive autoregressive model, we propose a non-parametric estimation method based on linear polynomial splines. Following this, the effectiveness of these estimations is verified through residual analysis and uncertain hypothesis tests. Finally, we apply the introduced non-parametric estimation approach to the Brent crude oil spot price.

Suggested Citation

  • Yi Zhang & Jinwu Gao, 2024. "Nonparametric uncertain time series models: theory and application in brent crude oil spot price analysis," Fuzzy Optimization and Decision Making, Springer, vol. 23(2), pages 239-252, June.
  • Handle: RePEc:spr:fuzodm:v:23:y:2024:i:2:d:10.1007_s10700-024-09419-9
    DOI: 10.1007/s10700-024-09419-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10700-024-09419-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10700-024-09419-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang Liu & Baoding Liu, 2022. "Residual analysis and parameter estimation of uncertain differential equations," Fuzzy Optimization and Decision Making, Springer, vol. 21(4), pages 513-530, December.
    2. Tingqing Ye & Baoding Liu, 2022. "Uncertain hypothesis test with application to uncertain regression analysis," Fuzzy Optimization and Decision Making, Springer, vol. 21(2), pages 157-174, June.
    3. Tingqing Ye & Xiangfeng Yang, 2021. "Analysis and prediction of confirmed COVID-19 cases in China with uncertain time series," Fuzzy Optimization and Decision Making, Springer, vol. 20(2), pages 209-228, June.
    4. Liu He & Yuanguo Zhu & Yajing Gu, 2023. "Nonparametric estimation for uncertain differential equations," Fuzzy Optimization and Decision Making, Springer, vol. 22(4), pages 697-715, December.
    5. Xiangfeng Yang & Yaodong Ni, 2021. "Least-squares estimation for uncertain moving average model," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 50(17), pages 4134-4143, August.
    6. Kai Yao & Baoding Liu, 2020. "Parameter estimation in uncertain differential equations," Fuzzy Optimization and Decision Making, Springer, vol. 19(1), pages 1-12, March.
    7. Xiangfeng Yang & Baoding Liu, 2019. "Uncertain time series analysis with imprecise observations," Fuzzy Optimization and Decision Making, Springer, vol. 18(3), pages 263-278, September.
    8. Yang, Xiangfeng & Liu, Yuhan & Park, Gyei-Kark, 2020. "Parameter estimation of uncertain differential equation with application to financial market," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tingqing Ye & Baoding Liu, 2023. "Uncertain hypothesis test for uncertain differential equations," Fuzzy Optimization and Decision Making, Springer, vol. 22(2), pages 195-211, June.
    2. Jinran Chen, 2024. "Prediction of global trade network evolution with uncertain multi-step time series forecasting method," Fuzzy Optimization and Decision Making, Springer, vol. 23(3), pages 387-414, September.
    3. Jinsheng Xie & Waichon Lio, 2024. "Uncertain nonlinear time series analysis with applications to motion analysis and epidemic spreading," Fuzzy Optimization and Decision Making, Springer, vol. 23(2), pages 279-294, June.
    4. He, Liu & Zhu, Yuanguo, 2024. "Nonparametric estimation for uncertain fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    5. Liu He & Yuanguo Zhu & Yajing Gu, 2023. "Nonparametric estimation for uncertain differential equations," Fuzzy Optimization and Decision Making, Springer, vol. 22(4), pages 697-715, December.
    6. Liu, Hanjie & Zhu, Yuanguo, 2024. "Carbon option pricing based on uncertain fractional differential equation: A binomial tree approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 13-28.
    7. Waichon Lio & Rui Kang, 2023. "Bayesian rule in the framework of uncertainty theory," Fuzzy Optimization and Decision Making, Springer, vol. 22(3), pages 337-358, September.
    8. Noorani, Idin & Mehrdoust, Farshid, 2022. "Parameter estimation of uncertain differential equation by implementing an optimized artificial neural network," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    9. Xiangfeng Yang & Hua Ke, 2023. "Uncertain interest rate model for Shanghai interbank offered rate and pricing of American swaption," Fuzzy Optimization and Decision Making, Springer, vol. 22(3), pages 447-462, September.
    10. Chen, Dan & Liu, Yang, 2023. "Uncertain Gordon-Schaefer model driven by Liu process," Applied Mathematics and Computation, Elsevier, vol. 450(C).
    11. Xie, Jinsheng & Lio, Waichon & Kang, Rui, 2024. "Analysis of simple pendulum with uncertain differential equation," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    12. Jian Zhou & Yujiao Jiang & Athanasios A. Pantelous & Weiwen Dai, 2023. "A systematic review of uncertainty theory with the use of scientometrical method," Fuzzy Optimization and Decision Making, Springer, vol. 22(3), pages 463-518, September.
    13. Tingqing Ye & Baoding Liu, 2022. "Uncertain hypothesis test with application to uncertain regression analysis," Fuzzy Optimization and Decision Making, Springer, vol. 21(2), pages 157-174, June.
    14. Farshid Mehrdoust & Idin Noorani & Wei Xu, 2023. "Uncertain energy model for electricity and gas futures with application in spark-spread option price," Fuzzy Optimization and Decision Making, Springer, vol. 22(1), pages 123-148, March.
    15. Xin, Yue & Zhang, Yi & Noorani, Idin & Mehrdoust, Farshid & Gao, Jinwu, 2025. "Estimation of parameters and valuation of options written on multiple assets described by uncertain fractional differential equations," Applied Mathematics and Computation, Elsevier, vol. 487(C).
    16. Najafi, Alireza & Taleghani, Rahman, 2022. "Fractional Liu uncertain differential equation and its application to finance," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    17. Pan, Zeyu & Gao, Yin & Yuan, Lin, 2021. "Bermudan options pricing formulas in uncertain financial markets," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    18. Jie, Ke-Wei & Liu, San-Yang & Sun, Xiao-Jun & Xu, Yun-Cheng, 2023. "A dynamic ripple-spreading algorithm for solving mean–variance of shortest path model in uncertain random networks," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    19. Jin, Ting & Yang, Xiangfeng, 2021. "Monotonicity theorem for the uncertain fractional differential equation and application to uncertain financial market," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 203-221.
    20. Zhang, Guidong & Sheng, Yuhong, 2022. "Estimating time-varying parameters in uncertain differential equations," Applied Mathematics and Computation, Elsevier, vol. 425(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fuzodm:v:23:y:2024:i:2:d:10.1007_s10700-024-09419-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.