IDEAS home Printed from https://ideas.repec.org/a/spr/fuzodm/v17y2018i3d10.1007_s10700-017-9279-7.html
   My bibliography  Save this article

Interval fuzzy preferences in the graph model for conflict resolution

Author

Listed:
  • M. Abul Bashar

    (University of Jeddah
    University of Waterloo)

  • Keith W. Hipel

    (University of Waterloo
    Centre for International Governance Innovation)

  • D. Marc Kilgour

    (University of Waterloo
    Wilfrid Laurier University)

  • Amer Obeidi

    (University of Waterloo
    University of Waterloo)

Abstract

A new analysis technique, appropriate to situations of high preference uncertainty, is added to the graph model for conflict resolution methodology. Interval fuzzy stabilities are now formulated, based on decision makers’ (DMs’) interval fuzzy preferences over feasible scenarios or states in a conflict. Interval fuzzy stability notions enhance the applicability of the graph model, and generalize its crisp and fuzzy preference-based stability ideas. A graph model is both a formal representation and an analysis procedure for multiple participant-multiple objective decisions that employs stability concepts representing various forms of human behavior under conflict. Defined based on a type-2 fuzzy logic, an interval fuzzy preference for one state over another is represented by a subinterval of [0, 1] indicating an interval-valued preference degree for the first state over the second. The interval fuzzy stabilities put forward in this research are interval fuzzy Nash stability, interval fuzzy general metarational stability, interval fuzzy symmetric metarational stability, and interval fuzzy sequential stability. A state is interval fuzzy stable for a DM if moving to any other state is not adequately desirable to the DM; where adequacy is measured by the interval fuzzy satisficing threshold of the DM and farsightedness, involving possible moves and countermoves by DMs, is determined by the interval fuzzy stability notion selected. Note that infinitely many degrees in an interval-valued preference are preserved in characterizing the desirability of a move. A state from which no DM can move to any sufficiently desirable scenario is an interval fuzzy equilibrium, and is interpreted as a possible resolution of the strategic conflict under study. The new stability concept is illustrated through its application to an environmental conflict that took place in Elmira, Ontario, Canada. Insightful results are identified and discussed.

Suggested Citation

  • M. Abul Bashar & Keith W. Hipel & D. Marc Kilgour & Amer Obeidi, 2018. "Interval fuzzy preferences in the graph model for conflict resolution," Fuzzy Optimization and Decision Making, Springer, vol. 17(3), pages 287-315, September.
  • Handle: RePEc:spr:fuzodm:v:17:y:2018:i:3:d:10.1007_s10700-017-9279-7
    DOI: 10.1007/s10700-017-9279-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10700-017-9279-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10700-017-9279-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Keith W. Hipel & Amer Obeidi, 2005. "Trade versus the environment: Strategic settlement from a systems engineering perspective," Systems Engineering, John Wiley & Sons, vol. 8(3), pages 211-233, September.
    2. K W Li & D M Kilgour & K W Hipel, 2005. "Status quo analysis in the graph model for conflict resolution," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(6), pages 699-707, June.
    3. D. Marc Kilgour & Keith W. Hipel, 2005. "Introduction to the Special Issue on the Graph Model for Conflict Resolution," Group Decision and Negotiation, Springer, vol. 14(6), pages 439-440, November.
    4. D. Marc Kilgour & Keith W. Hipel, 2005. "The Graph Model for Conflict Resolution: Past, Present, and Future," Group Decision and Negotiation, Springer, vol. 14(6), pages 441-460, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shinan Zhao & Haiyan Xu, 2019. "A Novel Preference Elicitation Technique Based on a Graph Model and Its Application to a Brownfield Redevelopment Conflict in China," IJERPH, MDPI, vol. 16(21), pages 1-14, October.
    2. Zhao, Shinan & Xu, Haiyan & Hipel, Keith W. & Fang, Liping, 2019. "Mixed stabilities for analyzing opponents’ heterogeneous behavior within the graph model for conflict resolution," European Journal of Operational Research, Elsevier, vol. 277(2), pages 621-632.
    3. Liangyan Tao & Xuebi Su & Saad Ahmed Javed, 2021. "Inverse Preference Optimization in the Graph Model for Conflict Resolution based on the Genetic Algorithm," Group Decision and Negotiation, Springer, vol. 30(5), pages 1085-1112, October.
    4. Jing Yu & Ling-Ling Pei, 2018. "Investigation of a Brownfield Conflict Considering the Strength of Preferences," IJERPH, MDPI, vol. 15(2), pages 1-11, February.
    5. Shawei He, 2019. "Coalition Analysis in Basic Hierarchical Graph Model for Conflict Resolution with Application to Climate Change Governance Disputes," Group Decision and Negotiation, Springer, vol. 28(5), pages 879-906, October.
    6. Huang, Yuming & Ge, Bingfeng & Hipel, Keith W. & Fang, Liping & Zhao, Bin & Yang, Kewei, 2023. "Solving the inverse graph model for conflict resolution using a hybrid metaheuristic algorithm," European Journal of Operational Research, Elsevier, vol. 305(2), pages 806-819.
    7. Ming Tang & Huchang Liao, 2022. "A graph model for conflict resolution with inconsistent preferences among large-scale participants," Fuzzy Optimization and Decision Making, Springer, vol. 21(3), pages 455-478, September.
    8. Keith W. Hipel & Liping Fang & D. Marc Kilgour, 2020. "The Graph Model for Conflict Resolution: Reflections on Three Decades of Development," Group Decision and Negotiation, Springer, vol. 29(1), pages 11-60, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Felipe Costa Araujo & Alexandre Bevilacqua Leoneti, 2020. "Evaluating the Stability of the Oil and Gas Exploration and Production Regulatory Framework in Brazil," Group Decision and Negotiation, Springer, vol. 29(1), pages 143-156, February.
    2. Meraj Sohrabi & Zeynab Banoo Ahani Amineh & Mohammad Hossein Niksokhan & Hossein Zanjanian, 2023. "A framework for optimal water allocation considering water value, strategic management and conflict resolution," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(2), pages 1582-1613, February.
    3. Shawei He, 2019. "Coalition Analysis in Basic Hierarchical Graph Model for Conflict Resolution with Application to Climate Change Governance Disputes," Group Decision and Negotiation, Springer, vol. 28(5), pages 879-906, October.
    4. Giannini Italino Alves Vieira & Leandro Chaves Rêgo, 2020. "Berge Solution Concepts in the Graph Model for Conflict Resolution," Group Decision and Negotiation, Springer, vol. 29(1), pages 103-125, February.
    5. Yasir M. Aljefri & Liping Fang & Keith W. Hipel & Kaveh Madani, 2019. "Strategic Analyses of the Hydropolitical Conflicts Surrounding the Grand Ethiopian Renaissance Dam," Group Decision and Negotiation, Springer, vol. 28(2), pages 305-340, April.
    6. Peng Xu & Haiyan Xu & Ginger Y. Ke, 2018. "Integrating an Option-Oriented Attitude Analysis into Investigating the Degree of Stabilities in Conflict Resolution," Group Decision and Negotiation, Springer, vol. 27(6), pages 981-1010, December.
    7. Keith W. Hipel & Liping Fang & D. Marc Kilgour, 2020. "The Graph Model for Conflict Resolution: Reflections on Three Decades of Development," Group Decision and Negotiation, Springer, vol. 29(1), pages 11-60, February.
    8. Leandro Chaves Rêgo & France E. G. Oliveira, 2020. "Higher-order Sequential Stabilities in the Graph Model for Conflict Resolution for Bilateral Conflicts," Group Decision and Negotiation, Springer, vol. 29(4), pages 601-626, August.
    9. Haiyan Xu & D. Marc Kilgour & Keith W. Hipel, 2011. "Matrix Representation of Conflict Resolution in Multiple-Decision-Maker Graph Models with Preference Uncertainty," Group Decision and Negotiation, Springer, vol. 20(6), pages 755-779, November.
    10. Peng, Benhong & Zhao, Yinyin & Elahi, Ehsan & Wan, Anxia, 2023. "Can third-party market cooperation solve the dilemma of emissions reduction? A case study of energy investment project conflict analysis in the context of carbon neutrality," Energy, Elsevier, vol. 264(C).
    11. M. Nassereddine & M. A. Ellakkis & A. Azar & M. D. Nayeri, 2021. "Developing a Multi-methodology for Conflict Resolution: Case of Yemen’s Humanitarian Crisis," Group Decision and Negotiation, Springer, vol. 30(2), pages 301-320, April.
    12. Keith W. Hipel & Amer Obeidi, 2005. "Trade versus the environment: Strategic settlement from a systems engineering perspective," Systems Engineering, John Wiley & Sons, vol. 8(3), pages 211-233, September.
    13. Nannan Wu & Yejun Xu & D. Marc Kilgour, 2019. "Water allocation analysis of the Zhanghe River basin using the Graph Model for Conflict Resolution with incomplete fuzzy preferences," Sustainability, MDPI, vol. 11(4), pages 1-17, February.
    14. Augusto Getirana & Valéria de Fátima Malta, 2010. "Investigating Strategies of an Irrigation Conflict," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(12), pages 2893-2916, September.
    15. Kevin W. Li & Jason K. Levy & P. Buckley, 2009. "Enhancing National Security and Energy Security in the Post-911 Era: Group Decision Support for Strategic Policy Analysis under Conditions of Conflict," Group Decision and Negotiation, Springer, vol. 18(4), pages 369-386, July.
    16. He, Shawei & Marc Kilgour, D. & Hipel, Keith W., 2017. "A general hierarchical graph model for conflict resolution with application to greenhouse gas emission disputes between USA and China," European Journal of Operational Research, Elsevier, vol. 257(3), pages 919-932.
    17. Amir H. Aghmashhadi & Samaneh Zahedi & Azadeh Kazemi & Christine Fürst & Giuseppe T. Cirella, 2022. "Conflict Analysis of Physical Industrial Land Development Policy Using Game Theory and Graph Model for Conflict Resolution in Markazi Province," Land, MDPI, vol. 11(4), pages 1-18, March.
    18. Mengjie Yang & Kai Yang & Yue Che & Shiqiang Lu & Fengyun Sun & Ying Chen & Mengting Li, 2021. "Resolving Transboundary Water Conflicts: Dynamic Evolutionary Analysis Using an Improved GMCR Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(10), pages 3321-3338, August.
    19. Majid Sheikhmohammady & Keith W. Hipel & D. Marc Kilgour, 2012. "Formal Analysis of Multilateral Negotiations Over the Legal Status of the Caspian Sea," Group Decision and Negotiation, Springer, vol. 21(3), pages 305-329, May.
    20. Annik Magerholm Fet & Erwin M. Schau & Cecilia Haskins, 2010. "A framework for environmental analyses of fish food production systems based on systems engineering principles," Systems Engineering, John Wiley & Sons, vol. 13(2), pages 109-118, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fuzodm:v:17:y:2018:i:3:d:10.1007_s10700-017-9279-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.