IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v27y2025i5d10.1007_s10668-023-04390-8.html
   My bibliography  Save this article

Using game theory algorithm to identify critical watersheds based on environmental flow components and hydrological indicators

Author

Listed:
  • Ali Nasiri Khiavi

    (Tarbiat Modares University)

  • Raoof Mostafazadeh

    (University of Mohaghegh Ardabili)

  • Fatemeh Ghanbari Talouki

    (Tarbiat Modares University)

Abstract

Improper use of water resources has caused significant changes in natural river flow (NRF), which indicates the need to assess changes in hydrological indicators (HI) and environmental flow components (EFC). This study quantitatively assessed 26 hydrological indices (HI) and 21 effective flow components (EFC) at four river gauge stations in Ardabil, Iran, including Nir, Pol-e-Almas, Arbab-Kandi and Doost-Beiglou. It used the Borda scoring algorithm (BSA) based on game theory (GT) to determine watershed vulnerability. With rivers playing a crucial role in ecosystems and human life, the research focused on NRF alterations' impact in Ardabil province. In the research methodology, indicators of hydrological alteration (IHA) software were used to quantify river flow indices. In total, 26 HI and 21 EFC have been quantified and were used to identify critical watersheds. Principal component analysis (PCA) was used to determine the most significant indicators. After the data reduction, the initial matrix and comparative preferences of GT were used, and the scores were assigned to watersheds based on BSA. The analysis identified four significant groups of components within hydrological indices (HI) and effective flow components (EFC) using the main component. The first and second components, with 59.96% and 32.00% variance, were more important than the third and fourth components, which accounted for 4.43% and 2.83% variance. In the Doost-Beiglou watershed, a notable change occurred, where the small flood peak decreased from 14.08 in the pre-dam period to 3.5 in the post-dam period. The scoring of the studied watersheds based on HI and EFC, game theory showed that the watersheds affected by the dam with the scores of 216 and 174 were ranked first and were selected as the most critical watersheds in the study area. As a concluding remark, in the watersheds of Pol-e-Almas and Doost-Beiglou, which were affected by Yamchi and Sabalan dams, significant changes were observed in HI and EFCs. Therefore, in terms of NRF, Balkhlou-Chay and Qareh-Sou Rivers were categorized as critical conditions. In future research, consider incorporating ecological indicators alongside hydrological and environmental ones to better understand river flow dynamics. Additionally, explore the influence of changing climatic parameters on water resources. Engage local stakeholders and implement co-management approaches, using comprehensive data to analyze river flow trends.

Suggested Citation

  • Ali Nasiri Khiavi & Raoof Mostafazadeh & Fatemeh Ghanbari Talouki, 2025. "Using game theory algorithm to identify critical watersheds based on environmental flow components and hydrological indicators," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(5), pages 11931-11954, May.
  • Handle: RePEc:spr:endesu:v:27:y:2025:i:5:d:10.1007_s10668-023-04390-8
    DOI: 10.1007/s10668-023-04390-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-023-04390-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-023-04390-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Najmeh Mahjouri & Mohammad Bizhani-Manzar, 2013. "Waste Load Allocation in Rivers using Fallback Bargaining," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2125-2136, May.
    2. Budi Hadi Narendra & Chairil Anwar Siregar & I Wayan Susi Dharmawan & Asep Sukmana & Pratiwi & Irfan Budi Pramono & Tyas Mutiara Basuki & Hunggul Yudono Setio Hadi Nugroho & Agung Budi Supangat & Purw, 2021. "A Review on Sustainability of Watershed Management in Indonesia," Sustainability, MDPI, vol. 13(19), pages 1-29, October.
    3. Gianluigi Busico & Maria Margarita Ntona & Sílvia C. P. Carvalho & Olga Patrikaki & Konstantinos Voudouris & Nerantzis Kazakis, 2021. "Simulating Future Groundwater Recharge in Coastal and Inland Catchments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3617-3632, September.
    4. Majid Sheikhmohammady & D. Marc Kilgour & Keith W. Hipel, 2010. "Modeling the Caspian Sea Negotiations," Group Decision and Negotiation, Springer, vol. 19(2), pages 149-168, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Reza Alizadeh & Mohammad Reza Nikoo & Gholam Reza Rakhshandehroo, 2017. "Developing a Multi-Objective Conflict-Resolution Model for Optimal Groundwater Management Based on Fallback Bargaining Models and Social Choice Rules: a Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(5), pages 1457-1472, March.
    2. Mahboubeh Kalantari & Mohammad Reza Nikoo & Nasser Talebbeydokhti, 2025. "Assessment of renewable water in the face of climate change by a comprehensive analysis of adaptation strategies," Climatic Change, Springer, vol. 178(3), pages 1-24, March.
    3. Sarita Gajbhiye Meshram & Maryam Adhami & Ozgur Kisi & Chandrashekhar Meshram & Pham Anh Duc & Khaled Mohamed Khedher, 2021. "Identification of Critical Watershed for Soil Conservation Using Game Theory-Based Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(10), pages 3105-3120, August.
    4. Ali Nasiri Khiavi & Seyed Hamidreza Sadeghi & Mehdi Vafakhah, 2024. "Comparative Prioritization of Sub-Watersheds in Flood Generation Using Co-Management Best-Worst Method and Game Theory Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(12), pages 4431-4453, September.
    5. Sareh S. Naserizade & Mohammad Reza Nikoo & Hossein Montaseri & Mohammad Reza Alizadeh, 2021. "A Hybrid Fuzzy-Probabilistic Bargaining Approach for Multi-objective Optimization of Contamination Warning Sensors in Water Distribution Systems," Group Decision and Negotiation, Springer, vol. 30(3), pages 641-663, June.
    6. Aikaterini Lyra & Athanasios Loukas, 2023. "Simulation and Evaluation of Water Resources Management Scenarios Under Climate Change for Adaptive Management of Coastal Agricultural Watersheds," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2625-2642, May.
    7. Omid Babamiri & Yagob Dinpashoh, 2024. "Uncertainty Analysis of River Water Quality Based on Stochastic Optimization of Waste Load Allocation Using the Generalized Likelihood Uncertainty Estimation Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(3), pages 967-989, February.
    8. Ali Nasiri Khiavi & Mehdi Vafakhah & Seyed Hamidreza Sadeghi, 2022. "Comparative prioritization of sub-watersheds based on Flood Generation potential using physical, hydrological and co-managerial approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 1897-1917, April.
    9. Hunggul Yudono Setio Hadi Nugroho & Tyas Mutiara Basuki & Irfan Budi Pramono & Endang Savitri & Purwanto & Dewi Retna Indrawati & Nining Wahyuningrum & Rahardyan Nugroho Adi & Yonky Indrajaya & Agung , 2022. "Forty Years of Soil and Water Conservation Policy, Implementation, Research and Development in Indonesia: A Review," Sustainability, MDPI, vol. 14(5), pages 1-33, March.
    10. Mohammad Reza Nikoo & Pouyan Hatami Bahman Beiglou & Najmeh Mahjouri, 2016. "Optimizing Multiple-Pollutant Waste Load Allocation in Rivers: An Interval Parameter Game Theoretic Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4201-4220, September.
    11. Shahryar Monghasemi & Mohammad Reza Nikoo & Mohammad Ali Khaksar Fasaee & Jan Adamowski, 2017. "A Hybrid of Genetic Algorithm and Evidential Reasoning for Optimal Design of Project Scheduling: A Systematic Negotiation Framework for Multiple Decision-Makers," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(02), pages 389-420, March.
    12. Khadije Norouzi Khatiri & Mohammad Hossein Niksokhan & Amin Sarang & Asghar Kamali, 2020. "Coupled Simulation-Optimization Model for the Management of Groundwater Resources by Considering Uncertainty and Conflict Resolution," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(11), pages 3585-3608, September.
    13. Nagarajan Shanmugavel & Rema Rajendran, 2022. "Adoption of Rainwater Harvesting: a Dual-factor Approach by Integrating Theory of Planned Behaviour and Norm Activation Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(8), pages 2827-2845, June.
    14. Nadine Wittmann, 2014. "A Microeconomic Perspective on Water Resources Management: Analyzing the Effects on Optimal Land Rents Along a River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1309-1325, March.
    15. Dona Octavia & Sri Suharti & Murniati & I Wayan Susi Dharmawan & Hunggul Yudono Setio Hadi Nugroho & Bambang Supriyanto & Dede Rohadi & Gerson Ndawa Njurumana & Irma Yeny & Aditya Hani & Nina Mindawat, 2022. "Mainstreaming Smart Agroforestry for Social Forestry Implementation to Support Sustainable Development Goals in Indonesia: A Review," Sustainability, MDPI, vol. 14(15), pages 1-29, July.
    16. Heike Hennig-Schmidt & Gari Walkowitz, 2017. "Moral Entitlements and Aspiration Formation in Asymmetric Bargaining: Experimental Evidence from Germany and China," Games, MDPI, vol. 8(4), pages 1-25, October.
    17. Tyas Mutiara Basuki & Hunggul Yudono Setio Hadi Nugroho & Yonky Indrajaya & Irfan Budi Pramono & Nunung Puji Nugroho & Agung Budi Supangat & Dewi Retna Indrawati & Endang Savitri & Nining Wahyuningrum, 2022. "Improvement of Integrated Watershed Management in Indonesia for Mitigation and Adaptation to Climate Change: A Review," Sustainability, MDPI, vol. 14(16), pages 1-41, August.
    18. Najmeh Mahjouri & Mohammad Bizhani-Manzar, 2013. "Waste Load Allocation in Rivers using Fallback Bargaining," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2125-2136, May.
    19. Mirabi, Mehrdad & Mianabadi, Hojjat & Zarghami, Mahdi & Sharifi, Mohammad Bagher & Mostert, Erik, 2014. "Risk-based evaluation of wastewater treatment projects: A case study in Niasar city, Iran," Resources, Conservation & Recycling, Elsevier, vol. 93(C), pages 168-177.
    20. repec:cgr:cgsser:06-01 is not listed on IDEAS
    21. Bonifacio Llamazares & Teresa Peña, 2015. "Positional Voting Systems Generated by Cumulative Standings Functions," Group Decision and Negotiation, Springer, vol. 24(5), pages 777-801, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:27:y:2025:i:5:d:10.1007_s10668-023-04390-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.