IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i6d10.1007_s10668-020-00968-8.html
   My bibliography  Save this article

Carbon footprint in the downstream dairy value chain in Ziway-Hawassa milk shed, Ethiopia

Author

Listed:
  • Godadaw Misganaw

    (Van Hall Larenstein University of Applied Sciences
    University of Gondar)

  • Robert Baars

    (Van Hall Larenstein University of Applied Sciences)

  • Marco Verschuur

    (Van Hall Larenstein University of Applied Sciences)

  • Biruh Tesfahun

    (Van Hall Larenstein University of Applied Sciences
    Dilla University)

  • Sara Endale

    (Van Hall Larenstein University of Applied Sciences
    Dilla University)

  • Demeke Haile

    (Van Hall Larenstein University of Applied Sciences
    Dilla University)

Abstract

Purpose The carbon footprint for the downstream dairy value chain, milk collection and dairy processing plants was estimated through the contribution of emissions per unit of collected and processed milk, whereas that for the upstream dairy value chain, input supply and production was not considered. A survey was conducted among 28 milk collectors and four employees of processing plants. Two clusters were established: small- and large-scale milk collectors. The means of carbon dioxide equivalent per kilogramme (CO2-eq/kg) milk were compared between clusters by using independent sample t-test.The average utilisation efficiency of milk cooling refrigerators for small- and large-scale collectors was 48.5 and 9.3%, respectively. Milk collectors released carbon footprint from their collection, cooling and distribution practices. The mean kg CO2-eq/kg milk was 0.023 for large-scale collectors and 0.106 for small-scale collectors (p

Suggested Citation

  • Godadaw Misganaw & Robert Baars & Marco Verschuur & Biruh Tesfahun & Sara Endale & Demeke Haile, 2021. "Carbon footprint in the downstream dairy value chain in Ziway-Hawassa milk shed, Ethiopia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 8348-8364, June.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:6:d:10.1007_s10668-020-00968-8
    DOI: 10.1007/s10668-020-00968-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-020-00968-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-020-00968-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Biancamaria Torquati & Chiara Taglioni & Alessio Cavicchi, 2015. "Evaluating the CO 2 Emission of the Milk Supply Chain in Italy: An Exploratory Study," Sustainability, MDPI, vol. 7(6), pages 1-16, June.
    2. Huysveld, Sophie & Van linden, Veerle & De Meester, Steven & Peiren, Nico & Muylle, Hilde & Lauwers, Ludwig & Dewulf, Jo, 2015. "Resource use assessment of an agricultural system from a life cycle perspective – a dairy farm as case study," Agricultural Systems, Elsevier, vol. 135(C), pages 77-89.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huysveld, Sophie & Van Meensel, Jef & Van linden, Veerle & De Meester, Steven & Peiren, Nico & Muylle, Hilde & Dewulf, Jo & Lauwers, Ludwig, 2017. "Communicative farm-specific diagnosis of potential simultaneous savings in costs and natural resource demand of feed on dairy farms," Agricultural Systems, Elsevier, vol. 150(C), pages 34-45.
    2. Biancamaria Torquati & Lucio Cecchini & Chiara Paffarini & Massimo Chiorri, 2021. "The economic and environmental sustainability of extra virgin olive oil supply chains: An analysis based on food miles and value chains," Economia agro-alimentare, FrancoAngeli Editore, vol. 23(1), pages 1-28.
    3. Huysman, Sofie & De Schaepmeester, Jonas & Ragaert, Kim & Dewulf, Jo & De Meester, Steven, 2017. "Performance indicators for a circular economy: A case study on post-industrial plastic waste," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 46-54.
    4. Koesling, Matthias & Hansen, Sissel & Bleken, Marina Azzaroli, 2017. "Variations in nitrogen utilisation on conventional and organic dairy farms in Norway," Agricultural Systems, Elsevier, vol. 157(C), pages 11-21.
    5. Kipling, Richard P. & Bannink, André & Bellocchi, Gianni & Dalgaard, Tommy & Fox, Naomi J. & Hutchings, Nicholas J. & Kjeldsen, Chris & Lacetera, Nicola & Sinabell, Franz & Topp, Cairistiona F.E. & va, 2016. "Modeling European ruminant production systems: Facing the challenges of climate change," Agricultural Systems, Elsevier, vol. 147(C), pages 24-37.
    6. Daniela B. Bartholomeu & Celso J. R. Lopes & Hugo T. Y. Yoshizaki, 2020. "CO 2 Emissions from Fuel Consumption in the Logistic Stages of the Brazilian Bioethanol Supply Chain," Sustainability, MDPI, vol. 12(23), pages 1-18, November.
    7. Moretti, Michele & De Boni, Annalisa & Roma, Rocco & Fracchiolla, Mariano & Van Passel, Steven, 2016. "Integrated assessment of agro-ecological systems: The case study of the “Alta Murgia” National park in Italy," Agricultural Systems, Elsevier, vol. 144(C), pages 144-155.
    8. Torquati, Biancamaria & Cecchini, Lucio & Paffarini, Chiara & Chiorri, Massimo, 2021. "The economic and environmental sustainability of extra virgin olive oil supply chains: An analysis based on food miles and value chains," Economia agro-alimentare / Food Economy, Italian Society of Agri-food Economics/Società Italiana di Economia Agro-Alimentare (SIEA), vol. 23(1), May.
    9. Huysveld, Sophie & De Meester, Steven & Van linden, Veerle & Muylle, Hilde & Peiren, Nico & Lauwers, Ludwig & Dewulf, Jo, 2015. "Cumulative Overall Resource Efficiency Assessment (COREA) for comparing bio-based products with their fossil-derived counterparts," Resources, Conservation & Recycling, Elsevier, vol. 102(C), pages 113-127.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:6:d:10.1007_s10668-020-00968-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.