IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i3d10.1007_s10668-020-00776-0.html
   My bibliography  Save this article

Development of microspheres using water hyacinth (Eichhornia crassipes) for treatment of contaminated water with Cr(VI)

Author

Listed:
  • Uriel F. Carreño-Sayago

    (Fundación Universitaria los libertadores)

Abstract

The chemical contamination of water is increasingly evident, and the lack of alternatives for water treatment is one of the main problems that leads to the contamination of rivers, lagoons, wetlands and others. The biomass of Eichhornia crassipes is an alternative, since it retains heavy metals due to its great bioadsorption capacity in its vegetal structure. The objective of this research is to develop microspheres with dry and pulverized biomass of the roots E. crassipes, combining them with sodium tripolyphosphate for the adsorption of chromium from the waters of tanneries. The pH, the initial concentration and the ideal amount of these microspheres were evaluated together with the adsorption isotherms and the second-order adsorption model. There was an interesting capacity of chromium(VI) adsorption of 7.7 mg/g. The best adjusted isotherm model was the Langmuir model, and the different eliminations were adjusted to a second-order adsorption model, demonstrating that this process of adhesion is governed by a chemisorption process. It was concluded that those microspheres are one alternative for treatment of water contaminated with different heavy metals and could be used in great-scale industry.

Suggested Citation

  • Uriel F. Carreño-Sayago, 2021. "Development of microspheres using water hyacinth (Eichhornia crassipes) for treatment of contaminated water with Cr(VI)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 4735-4746, March.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:3:d:10.1007_s10668-020-00776-0
    DOI: 10.1007/s10668-020-00776-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-020-00776-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-020-00776-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rahman, S.N.A. & Masdar, M.S. & Rosli, M.I. & Majlan, E.H. & Husaini, T. & Kamarudin, S.K. & Daud, W.R.W., 2016. "Overview biohydrogen technologies and application in fuel cell technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 137-162.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khan, Mohd Atiqueuzzaman & Ngo, Huu Hao & Guo, Wenshan & Liu, Yiwen & Zhang, Xinbo & Guo, Jianbo & Chang, Soon Woong & Nguyen, Dinh Duc & Wang, Jie, 2018. "Biohydrogen production from anaerobic digestion and its potential as renewable energy," Renewable Energy, Elsevier, vol. 129(PB), pages 754-768.
    2. Lin, Chiu-Yue & Nguyen, Thi Mai-Linh & Chu, Chen-Yeon & Leu, Hoang-Jyh & Lay, Chyi-How, 2018. "Fermentative biohydrogen production and its byproducts: A mini review of current technology developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4215-4220.
    3. Fariha Kanwal & Angel A. J. Torriero, 2022. "Biohydrogen—A Green Fuel for Sustainable Energy Solutions," Energies, MDPI, vol. 15(20), pages 1-20, October.
    4. Basak, Bikram & Jeon, Byong-Hun & Kim, Tae Hyun & Lee, Jae-Cheol & Chatterjee, Pradip Kumar & Lim, Hankwon, 2020. "Dark fermentative hydrogen production from pretreated lignocellulosic biomass: Effects of inhibitory byproducts and recent trends in mitigation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    5. Wegener, Moritz & Malmquist, Anders & Isalgué, Antonio & Martin, Andrew, 2018. "Biomass-fired combined cooling, heating and power for small scale applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 392-410.
    6. Lim, Seul-Ye & Kim, Hyo-Jin & Yoo, Seung-Hoon, 2018. "Household willingness to pay for expanding fuel cell power generation in Korea: A view from CO2 emissions reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 242-249.
    7. Shabarish Shankaran & Tamilarasan Karuppiah & Rajesh Banu Jeyakumar, 2022. "Chemo-Sonic Pretreatment Approach on Marine Macroalgae for Energy Efficient Biohydrogen Production," Sustainability, MDPI, vol. 14(19), pages 1-17, October.
    8. Rahul Prasad Singh & Priya Yadav & Indrajeet Kumar & Manoj Kumar Solanki & Rajib Roychowdhury & Ajay Kumar & Rajan Kumar Gupta, 2023. "Advancement of Abiotic Stresses for Microalgal Lipid Production and Its Bioprospecting into Sustainable Biofuels," Sustainability, MDPI, vol. 15(18), pages 1-36, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:3:d:10.1007_s10668-020-00776-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.