IDEAS home Printed from https://ideas.repec.org/a/spr/digfin/v6y2024i4d10.1007_s42521-023-00098-6.html
   My bibliography  Save this article

Deep PDE solution to BSDE

Author

Listed:
  • Maxim Bichuch

    (University at Buffalo)

  • Jiahao Hou

    (Johns Hopkins University)

Abstract

We numerically solve a high-dimensional backward stochastic differential equation (BSDE) by solving the corresponding partial differential equation (PDE) instead. To have a good approximation of the gradient of the solution of the PDE, we numerically solve a coupled PDE, consisting of the original semilinear parabolic PDE and the PDEs for its derivatives. We then prove the existence and uniqueness of the classical solution of this coupled PDE, and then show how to truncate the unbounded domain to a bounded one, so that the error between the original solution and that of the same coupled PDE but on the bounded domain, is small. We then solve this coupled PDE using neural networks, and proceed to establish a convergence of the numerical solution to the true solution. Finally, we test this on 100-dimensional Allen–Cahn equation, a nonlinear Black–Scholes equation and other examples. We also compare our results to the result of solving the BSDE directly.

Suggested Citation

  • Maxim Bichuch & Jiahao Hou, 2024. "Deep PDE solution to BSDE," Digital Finance, Springer, vol. 6(4), pages 727-758, December.
  • Handle: RePEc:spr:digfin:v:6:y:2024:i:4:d:10.1007_s42521-023-00098-6
    DOI: 10.1007/s42521-023-00098-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s42521-023-00098-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s42521-023-00098-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    BSDE; PDE; Deep learning; DGM; Convergence;
    All these keywords.

    JEL classification:

    • C69 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:digfin:v:6:y:2024:i:4:d:10.1007_s42521-023-00098-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.