IDEAS home Printed from https://ideas.repec.org/a/spr/digfin/v6y2024i4d10.1007_s42521-023-00098-6.html
   My bibliography  Save this article

Deep PDE solution to BSDE

Author

Listed:
  • Maxim Bichuch

    (University at Buffalo)

  • Jiahao Hou

    (Johns Hopkins University)

Abstract

We numerically solve a high-dimensional backward stochastic differential equation (BSDE) by solving the corresponding partial differential equation (PDE) instead. To have a good approximation of the gradient of the solution of the PDE, we numerically solve a coupled PDE, consisting of the original semilinear parabolic PDE and the PDEs for its derivatives. We then prove the existence and uniqueness of the classical solution of this coupled PDE, and then show how to truncate the unbounded domain to a bounded one, so that the error between the original solution and that of the same coupled PDE but on the bounded domain, is small. We then solve this coupled PDE using neural networks, and proceed to establish a convergence of the numerical solution to the true solution. Finally, we test this on 100-dimensional Allen–Cahn equation, a nonlinear Black–Scholes equation and other examples. We also compare our results to the result of solving the BSDE directly.

Suggested Citation

  • Maxim Bichuch & Jiahao Hou, 2024. "Deep PDE solution to BSDE," Digital Finance, Springer, vol. 6(4), pages 727-758, December.
  • Handle: RePEc:spr:digfin:v:6:y:2024:i:4:d:10.1007_s42521-023-00098-6
    DOI: 10.1007/s42521-023-00098-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s42521-023-00098-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s42521-023-00098-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christian Bender & Nikolaus Schweizer & Jia Zhuo, 2017. "A Primal–Dual Algorithm For Bsdes," Mathematical Finance, Wiley Blackwell, vol. 27(3), pages 866-901, July.
    2. Bender, Christian & Denk, Robert, 2007. "A forward scheme for backward SDEs," Stochastic Processes and their Applications, Elsevier, vol. 117(12), pages 1793-1812, December.
    3. Justin Sirignano & Konstantinos Spiliopoulos, 2017. "DGM: A deep learning algorithm for solving partial differential equations," Papers 1708.07469, arXiv.org, revised Sep 2018.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olivier Bokanowski & Averil Prost & Xavier Warin, 2023. "Neural networks for first order HJB equations and application to front propagation with obstacle terms," Partial Differential Equations and Applications, Springer, vol. 4(5), pages 1-36, October.
    2. Ariel Neufeld & Philipp Schmocker & Sizhou Wu, 2024. "Full error analysis of the random deep splitting method for nonlinear parabolic PDEs and PIDEs," Papers 2405.05192, arXiv.org, revised Jan 2025.
    3. Sebastian Becker & Patrick Cheridito & Arnulf Jentzen & Timo Welti, 2019. "Solving high-dimensional optimal stopping problems using deep learning," Papers 1908.01602, arXiv.org, revised Aug 2021.
    4. William Lefebvre & Enzo Miller, 2021. "Linear-quadratic stochastic delayed control and deep learning resolution," Working Papers hal-03145949, HAL.
    5. A. Max Reppen & H. Mete Soner & Valentin Tissot-Daguette, 2022. "Deep Stochastic Optimization in Finance," Papers 2205.04604, arXiv.org.
    6. Sebastian Jaimungal, 2022. "Reinforcement learning and stochastic optimisation," Finance and Stochastics, Springer, vol. 26(1), pages 103-129, January.
    7. Rong Du & Duy-Minh Dang, 2023. "Fourier Neural Network Approximation of Transition Densities in Finance," Papers 2309.03966, arXiv.org, revised Sep 2024.
    8. Gero Junike & Hauke Stier, 2024. "Enhancing Fourier pricing with machine learning," Papers 2412.05070, arXiv.org.
    9. Ali Al-Aradi & Adolfo Correia & Danilo de Frietas Naiff & Gabriel Jardim & Yuri Saporito, 2019. "Extensions of the Deep Galerkin Method," Papers 1912.01455, arXiv.org, revised Apr 2022.
    10. Maximilien Germain & Huyên Pham & Xavier Warin, 2021. "Neural networks-based algorithms for stochastic control and PDEs in finance ," Post-Print hal-03115503, HAL.
    11. Weinan E & Martin Hutzenthaler & Arnulf Jentzen & Thomas Kruse, 2021. "Multilevel Picard iterations for solving smooth semilinear parabolic heat equations," Partial Differential Equations and Applications, Springer, vol. 2(6), pages 1-31, December.
    12. Salah A. Faroughi & Ramin Soltanmohammadi & Pingki Datta & Seyed Kourosh Mahjour & Shirko Faroughi, 2023. "Physics-Informed Neural Networks with Periodic Activation Functions for Solute Transport in Heterogeneous Porous Media," Mathematics, MDPI, vol. 12(1), pages 1-23, December.
    13. Jiequn Han & Ruimeng Hu & Jihao Long, 2020. "Convergence of Deep Fictitious Play for Stochastic Differential Games," Papers 2008.05519, arXiv.org, revised Mar 2021.
    14. Dehghani, Hamidreza & Zilian, Andreas, 2021. "A hybrid MGA-MSGD ANN training approach for approximate solution of linear elliptic PDEs," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 398-417.
    15. Christian Bender & Nikolaus Schweizer & Jia Zhuo, 2013. "A primal-dual algorithm for BSDEs," Papers 1310.3694, arXiv.org, revised Sep 2014.
    16. Polynice Oyono Ngou & Cody Hyndman, 2014. "A Fourier interpolation method for numerical solution of FBSDEs: Global convergence, stability, and higher order discretizations," Papers 1410.8595, arXiv.org, revised May 2022.
    17. Jesús Fernández-Villaverde & Galo Nuño & Jesse Perla, 2024. "Taming the Curse of Dimensionality: Quantitative Economics with Deep Learning," NBER Working Papers 33117, National Bureau of Economic Research, Inc.
    18. Chong, Wing Fung, 2019. "Pricing and hedging equity-linked life insurance contracts beyond the classical paradigm: The principle of equivalent forward preferences," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 93-107.
    19. Jialiang Luo & Harry Zheng, 2023. "Deep Neural Network Solution for Finite State Mean Field Game with Error Estimation," Dynamic Games and Applications, Springer, vol. 13(3), pages 859-896, September.
    20. Qiang Han & Shaolin Ji, 2022. "A Multi-Step Algorithm for BSDEs Based On a Predictor-Corrector Scheme and Least-Squares Monte Carlo," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2403-2426, December.

    More about this item

    Keywords

    BSDE; PDE; Deep learning; DGM; Convergence;
    All these keywords.

    JEL classification:

    • C69 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:digfin:v:6:y:2024:i:4:d:10.1007_s42521-023-00098-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.