IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v88y2024i3d10.1007_s10589-024-00573-9.html
   My bibliography  Save this article

Chance-constrained programs with convex underlying functions: a bilevel convex optimization perspective

Author

Listed:
  • Yassine Laguel

    (Université Côte d’Azur)

  • Jérôme Malick

    (CNRS, LJK)

  • Wim Ackooij

    (EDF R &D. OSIRIS)

Abstract

Chance constraints are a valuable tool for the design of safe decisions in uncertain environments; they are used to model satisfaction of a constraint with a target probability. However, because of possible non-convexity and non-smoothness, optimizing over a chance constrained set is challenging. In this paper, we consider chance constrained programs where the objective function and the constraints are convex with respect to the decision parameter. We establish an exact reformulation of such a problem as a bilevel problem with a convex lower-level. Then we leverage this bilevel formulation to propose a tractable penalty approach, in the setting of finitely supported random variables. The penalized objective is a difference-of-convex function that we minimize with a suitable bundle algorithm. We release an easy-to-use open-source python toolbox implementing the approach, with a special emphasis on fast computational subroutines.

Suggested Citation

  • Yassine Laguel & Jérôme Malick & Wim Ackooij, 2024. "Chance-constrained programs with convex underlying functions: a bilevel convex optimization perspective," Computational Optimization and Applications, Springer, vol. 88(3), pages 819-847, July.
  • Handle: RePEc:spr:coopap:v:88:y:2024:i:3:d:10.1007_s10589-024-00573-9
    DOI: 10.1007/s10589-024-00573-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-024-00573-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-024-00573-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Francisco Facchinei & Lorenzo Lampariello, 2011. "Partial penalization for the solution of generalized Nash equilibrium problems," Journal of Global Optimization, Springer, vol. 50(1), pages 39-57, May.
    2. B. K. Pagnoncelli & S. Ahmed & A. Shapiro, 2009. "Sample Average Approximation Method for Chance Constrained Programming: Theory and Applications," Journal of Optimization Theory and Applications, Springer, vol. 142(2), pages 399-416, August.
    3. E. Medova, 1998. "Chance-constrained stochastic programming forintegrated services network management," Annals of Operations Research, Springer, vol. 81(0), pages 213-230, June.
    4. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    5. Aharon Ben‐Tal & Marc Teboulle, 2007. "An Old‐New Concept Of Convex Risk Measures: The Optimized Certainty Equivalent," Mathematical Finance, Wiley Blackwell, vol. 17(3), pages 449-476, July.
    6. L. Jeff Hong & Yi Yang & Liwei Zhang, 2011. "Sequential Convex Approximations to Joint Chance Constrained Programs: A Monte Carlo Approach," Operations Research, INFORMS, vol. 59(3), pages 617-630, June.
    7. Nan Jiang & Weijun Xie, 2022. "ALSO-X and ALSO-X+: Better Convex Approximations for Chance Constrained Programs," Operations Research, INFORMS, vol. 70(6), pages 3581-3600, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fei Sun & Jingchao Li & Jieming Zhou, 2018. "Dynamic risk measures with fluctuation of market volatility under Bochne-Lebesgue space," Papers 1806.01166, arXiv.org, revised Mar 2024.
    2. William B. Haskell & Wenjie Huang & Huifu Xu, 2018. "Preference Elicitation and Robust Optimization with Multi-Attribute Quasi-Concave Choice Functions," Papers 1805.06632, arXiv.org.
    3. Bellini, Fabio & Klar, Bernhard & Müller, Alfred & Rosazza Gianin, Emanuela, 2014. "Generalized quantiles as risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 41-48.
    4. Daniel Bartl & Samuel Drapeau & Ludovic Tangpi, 2017. "Computational aspects of robust optimized certainty equivalents and option pricing," Papers 1706.10186, arXiv.org, revised Mar 2019.
    5. Geissel Sebastian & Sass Jörn & Seifried Frank Thomas, 2018. "Optimal expected utility risk measures," Statistics & Risk Modeling, De Gruyter, vol. 35(1-2), pages 73-87, January.
    6. Dan A. Iancu & Marek Petrik & Dharmashankar Subramanian, 2015. "Tight Approximations of Dynamic Risk Measures," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 655-682, March.
    7. Wang, Fan & Zhang, Chao & Zhang, Hui & Xu, Liang, 2021. "Short-term physician rescheduling model with feature-driven demand for mental disorders outpatients," Omega, Elsevier, vol. 105(C).
    8. Zhi Chen & Melvyn Sim & Peng Xiong, 2020. "Robust Stochastic Optimization Made Easy with RSOME," Management Science, INFORMS, vol. 66(8), pages 3329-3339, August.
    9. Weiwei Li & Dejian Tian, 2023. "Robust optimized certainty equivalents and quantiles for loss positions with distribution uncertainty," Papers 2304.04396, arXiv.org.
    10. Wolfram Wiesemann & Daniel Kuhn & Melvyn Sim, 2014. "Distributionally Robust Convex Optimization," Operations Research, INFORMS, vol. 62(6), pages 1358-1376, December.
    11. Daniel Lacker, 2018. "Liquidity, Risk Measures, and Concentration of Measure," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 813-837, August.
    12. Elisa Pagani, 2015. "Certainty Equivalent: Many Meanings of a Mean," Working Papers 24/2015, University of Verona, Department of Economics.
    13. Drew P. Kouri & Thomas M. Surowiec, 2020. "Epi-Regularization of Risk Measures," Mathematics of Operations Research, INFORMS, vol. 45(2), pages 774-795, May.
    14. Louis Raymond Eeckhoudt & Elisa Pagani & Emanuela Rosazza Gianin, 2016. "Prudence, risk measures and the Optimized Certainty Equivalent: a note," Working Papers 07/2016, University of Verona, Department of Economics.
    15. Alexander Vinel & Pavlo A. Krokhmal, 2017. "Certainty equivalent measures of risk," Annals of Operations Research, Springer, vol. 249(1), pages 75-95, February.
    16. Xiaochuan Deng & Fei Sun, 2019. "Regulator-based risk statistics for portfolios," Papers 1904.08829, arXiv.org, revised Jun 2020.
    17. Daniel Bartl & Ludovic Tangpi, 2020. "Non-asymptotic convergence rates for the plug-in estimation of risk measures," Papers 2003.10479, arXiv.org, revised Oct 2022.
    18. Alexandre Street, 2010. "On the Conditional Value-at-Risk probability-dependent utility function," Theory and Decision, Springer, vol. 68(1), pages 49-68, February.
    19. Yannick Armenti & Stéphane Crépey & Samuel Drapeau & Antonis Papapantoleon, 2018. "Multivariate Shortfall Risk Allocation and Systemic Risk," Working Papers hal-01764398, HAL.
    20. Černý, Aleš & Maccheroni, Fabio & Marinacci, Massimo & Rustichini, Aldo, 2012. "On the computation of optimal monotone mean–variance portfolios via truncated quadratic utility," Journal of Mathematical Economics, Elsevier, vol. 48(6), pages 386-395.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:88:y:2024:i:3:d:10.1007_s10589-024-00573-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.