IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v86y2023i3d10.1007_s10589-022-00400-z.html
   My bibliography  Save this article

Distributed forward-backward methods for ring networks

Author

Listed:
  • Francisco J. Aragón-Artacho

    (University of Alicante)

  • Yura Malitsky

    (Linköping University)

  • Matthew K. Tam

    (University of Melbourne)

  • David Torregrosa-Belén

    (University of Alicante)

Abstract

In this work, we propose and analyse forward-backward-type algorithms for finding a zero of the sum of finitely many monotone operators, which are not based on reduction to a two operator inclusion in the product space. Each iteration of the studied algorithms requires one resolvent evaluation per set-valued operator, one forward evaluation per cocoercive operator, and two forward evaluations per monotone operator. Unlike existing methods, the structure of the proposed algorithms are suitable for distributed, decentralised implementation in ring networks without needing global summation to enforce consensus between nodes.

Suggested Citation

  • Francisco J. Aragón-Artacho & Yura Malitsky & Matthew K. Tam & David Torregrosa-Belén, 2023. "Distributed forward-backward methods for ring networks," Computational Optimization and Applications, Springer, vol. 86(3), pages 845-870, December.
  • Handle: RePEc:spr:coopap:v:86:y:2023:i:3:d:10.1007_s10589-022-00400-z
    DOI: 10.1007/s10589-022-00400-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-022-00400-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-022-00400-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Patrick R. Johnstone & Jonathan Eckstein, 2021. "Single-forward-step projective splitting: exploiting cocoercivity," Computational Optimization and Applications, Springer, vol. 78(1), pages 125-166, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. William W. Hager & R. Tyrrell Rockafellar & Vladimir M. Veliov, 2023. "Preface to Asen L. Dontchev Memorial Special Issue," Computational Optimization and Applications, Springer, vol. 86(3), pages 795-800, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luis M. Briceño-Arias & Fernando Roldán, 2022. "Four-Operator Splitting via a Forward–Backward–Half-Forward Algorithm with Line Search," Journal of Optimization Theory and Applications, Springer, vol. 195(1), pages 205-225, October.
    2. Adil Salim & Laurent Condat & Konstantin Mishchenko & Peter Richtárik, 2022. "Dualize, Split, Randomize: Toward Fast Nonsmooth Optimization Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 195(1), pages 102-130, October.
    3. Dong, Yunda, 2024. "Extended splitting methods for systems of three-operator monotone inclusions with continuous operators," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 223(C), pages 86-107.
    4. Patrick R. Johnstone & Jonathan Eckstein & Thomas Flynn & Shinjae Yoo, 2024. "Stochastic projective splitting," Computational Optimization and Applications, Springer, vol. 87(2), pages 397-437, March.
    5. Dong, Yunda, 2023. "A new splitting method for systems of monotone inclusions in Hilbert spaces," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 518-537.
    6. Majela Pentón Machado & Mauricio Romero Sicre, 2023. "A Projective Splitting Method for Monotone Inclusions: Iteration-Complexity and Application to Composite Optimization," Journal of Optimization Theory and Applications, Springer, vol. 198(2), pages 552-587, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:86:y:2023:i:3:d:10.1007_s10589-022-00400-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.