IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v86y2023i2d10.1007_s10589-023-00503-1.html
   My bibliography  Save this article

Doubly majorized algorithm for sparsity-inducing optimization problems with regularizer-compatible constraints

Author

Listed:
  • Tianxiang Liu

    (Tokyo Institute of Technology)

  • Ting Kei Pong

    (Hong Kong Polytechnic University)

  • Akiko Takeda

    (University of Tokyo
    RIKEN, Center for Advanced Intelligence Project)

Abstract

We consider a class of sparsity-inducing optimization problems whose constraint set is regularizer-compatible, in the sense that, the constraint set becomes easy-to-project-onto after a coordinate transformation induced by the sparsity-inducing regularizer. Our model is general enough to cover, as special cases, the ordered LASSO model in Tibshirani and Suo (Technometrics 58:415–423, 2016) and its variants with some commonly used nonconvex sparsity-inducing regularizers. The presence of both the sparsity-inducing regularizer and the constraint set poses challenges on the design of efficient algorithms. In this paper, by exploiting absolute-value symmetry and other properties in the sparsity-inducing regularizer, we propose a new algorithm, called the doubly majorized algorithm (DMA), for this class of problems. The DMA makes use of projections onto the constraint set after the coordinate transformation in each iteration, and hence can be performed efficiently. Without invoking any commonly used constraint qualification conditions such as those based on horizon subdifferentials, we show that any accumulation point of the sequence generated by DMA is a so-called $$\psi _\textrm{opt}$$ ψ opt -stationary point, a new notion of stationarity we define as inspired by the notion of L-stationarity in Beck and Eldar (SIAM J Optim 23:1480–1509, 2013) and Beck and Hallak (Math Oper Res 41:196–223, 2016) . We also show that any global minimizer of our model has to be a $$\psi _\textrm{opt}$$ ψ opt -stationary point, again without imposing any constraint qualification conditions. Finally, we illustrate numerically the performance of DMA on solving variants of ordered LASSO with nonconvex regularizers.

Suggested Citation

  • Tianxiang Liu & Ting Kei Pong & Akiko Takeda, 2023. "Doubly majorized algorithm for sparsity-inducing optimization problems with regularizer-compatible constraints," Computational Optimization and Applications, Springer, vol. 86(2), pages 521-553, November.
  • Handle: RePEc:spr:coopap:v:86:y:2023:i:2:d:10.1007_s10589-023-00503-1
    DOI: 10.1007/s10589-023-00503-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-023-00503-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-023-00503-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Kruskal, 1964. "Nonmetric multidimensional scaling: A numerical method," Psychometrika, Springer;The Psychometric Society, vol. 29(2), pages 115-129, June.
    2. Wei Bian & Xiaojun Chen, 2017. "Optimality and Complexity for Constrained Optimization Problems with Nonconvex Regularization," Mathematics of Operations Research, INFORMS, vol. 42(4), pages 1063-1084, November.
    3. Amir Beck & Nadav Hallak, 2016. "On the Minimization Over Sparse Symmetric Sets: Projections, Optimality Conditions, and Algorithms," Mathematics of Operations Research, INFORMS, vol. 41(1), pages 196-223, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lili Pan & Ziyan Luo & Naihua Xiu, 2017. "Restricted Robinson Constraint Qualification and Optimality for Cardinality-Constrained Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 175(1), pages 104-118, October.
    2. S. Lämmel & V. Shikhman, 2022. "On nondegenerate M-stationary points for sparsity constrained nonlinear optimization," Journal of Global Optimization, Springer, vol. 82(2), pages 219-242, February.
    3. Beniaich, Adnane & Guimarães, Danielle Vieira & Avanzi, Junior Cesar & Silva, Bruno Montoani & Acuña-Guzman, Salvador Francisco & dos Santos, Wharley Pereira & Silva, Marx Leandro Naves, 2023. "Spontaneous vegetation as an alternative to cover crops in olive orchards reduces water erosion and improves soil physical properties under tropical conditions," Agricultural Water Management, Elsevier, vol. 279(C).
    4. Giuseppe Arbia & Giovanni Lafratta, 2002. "Anisotropic spatial sampling designs for urban pollution," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 51(2), pages 223-234, May.
    5. Samuel Shye, 2010. "The Motivation to Volunteer: A Systemic Quality of Life Theory," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 98(2), pages 183-200, September.
    6. Muñoz-Mas, Rafael & Vezza, Paolo & Alcaraz-Hernández, Juan Diego & Martínez-Capel, Francisco, 2016. "Risk of invasion predicted with support vector machines: A case study on northern pike (Esox Lucius, L.) and bleak (Alburnus alburnus, L.)," Ecological Modelling, Elsevier, vol. 342(C), pages 123-134.
    7. la Grange, Anthony & le Roux, Niël & Gardner-Lubbe, Sugnet, 2009. "BiplotGUI: Interactive Biplots in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 30(i12).
    8. Simensen, Trond & Halvorsen, Rune & Erikstad, Lars, 2018. "Methods for landscape characterisation and mapping: A systematic review," Land Use Policy, Elsevier, vol. 75(C), pages 557-569.
    9. Silvia Vilčeková & Ilija Zoran Apostoloski & Ľudmila Mečiarová & Eva Krídlová Burdová & Jozef Kiseľák, 2017. "Investigation of Indoor Air Quality in Houses of Macedonia," IJERPH, MDPI, vol. 14(1), pages 1-12, January.
    10. Funk, Patrick & Davis, Alex & Vaishnav, Parth & Dewitt, Barry & Fuchs, Erica, 2020. "Individual inconsistency and aggregate rationality: Overcoming inconsistencies in expert judgment at the technical frontier," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
    11. Moris Triventi, 2014. "Higher education regimes: an empirical classification of higher education systems and its relationship with student accessibility," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(3), pages 1685-1703, May.
    12. Jessica Dafflon & Pedro F. Da Costa & František Váša & Ricardo Pio Monti & Danilo Bzdok & Peter J. Hellyer & Federico Turkheimer & Jonathan Smallwood & Emily Jones & Robert Leech, 2022. "A guided multiverse study of neuroimaging analyses," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    13. Karim Abou-Moustafa & Frank P. Ferrie, 2018. "Local generalized quadratic distance metrics: application to the k-nearest neighbors classifier," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 341-363, June.
    14. Camacho, Maximo & Perez-Quiros, Gabriel & Saiz, Lorena, 2006. "Are European business cycles close enough to be just one?," Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1687-1706.
    15. Mingxu Zhao & Nalaka Geekiyanage & Jianchu Xu & Myo Myo Khin & Dian Ridwan Nurdiana & Ekananda Paudel & Rhett Daniel Harrison, 2015. "Structure of the Epiphyte Community in a Tropical Montane Forest in SW China," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-19, April.
    16. Willem Heiser, 1991. "A generalized majorization method for least souares multidimensional scaling of pseudodistances that may be negative," Psychometrika, Springer;The Psychometric Society, vol. 56(1), pages 7-27, March.
    17. Luís Francisco Aguiar & Pedro C. Magalhães & Maria Joana Soares, 2010. "Synchronism in Electoral Cycles: How United are the United States?," NIPE Working Papers 17/2010, NIPE - Universidade do Minho.
    18. Janghyeok Yoon & Kwangsoo Kim, 2012. "Detecting signals of new technological opportunities using semantic patent analysis and outlier detection," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(2), pages 445-461, February.
    19. Kennen, Jonathan G. & Kauffman, Leon J. & Ayers, Mark A. & Wolock, David M. & Colarullo, Susan J., 2008. "Use of an integrated flow model to estimate ecologically relevant hydrologic characteristics at stream biomonitoring sites," Ecological Modelling, Elsevier, vol. 211(1), pages 57-76.
    20. Sagarra, Marti & Mar-Molinero, Cecilio & Agasisti, Tommaso, 2017. "Exploring the efficiency of Mexican universities: Integrating Data Envelopment Analysis and Multidimensional Scaling," Omega, Elsevier, vol. 67(C), pages 123-133.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:86:y:2023:i:2:d:10.1007_s10589-023-00503-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.