IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v64y2016i2d10.1007_s10589-015-9811-z.html
   My bibliography  Save this article

Sufficient weighted complementarity problems

Author

Listed:
  • Florian A. Potra

    (University of Maryland, Baltimore County)

Abstract

This paper presents some fundamental results about sufficient linear weighted complementarity problems. Such a problem depends on a nonnegative weight vector. If the weight vector is zero, the problem reduces to a sufficient linear complementarity problem that has been extensively studied. The introduction of the more general notion of a weighted complementarity problem (wCP) was motivated by the fact that wCP can model more general equilibrium problems than the classical complementarity problem (CP). The introduction of a nonzero weight vector makes the theory of wCP more complicated than the theory of CP. The paper gives a characterization of sufficient linear wCP and proposes a corrector–predictor interior-point method for its numerical solution. While the proposed algorithm does not depend on the handicap $$\kappa $$ κ of the problem its computational complexity is proportional with $$1+\kappa $$ 1 + κ . If the weight vector is zero and the starting point is relatively well centered, then the computational complexity of our algorithm is the same as the best known computational complexity for solving sufficient linear CP.

Suggested Citation

  • Florian A. Potra, 2016. "Sufficient weighted complementarity problems," Computational Optimization and Applications, Springer, vol. 64(2), pages 467-488, June.
  • Handle: RePEc:spr:coopap:v:64:y:2016:i:2:d:10.1007_s10589-015-9811-z
    DOI: 10.1007/s10589-015-9811-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-015-9811-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-015-9811-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Filiz Gurtuna & Cosmin Petra & Florian Potra & Olena Shevchenko & Adrian Vancea, 2011. "Corrector-predictor methods for sufficient linear complementarity problems," Computational Optimization and Applications, Springer, vol. 48(3), pages 453-485, April.
    2. Tibor Illés & Marianna Nagy & Tamás Terlaky, 2010. "A polynomial path-following interior point algorithm for general linear complementarity problems," Journal of Global Optimization, Springer, vol. 47(3), pages 329-342, July.
    3. Josef Stoer, 2001. "High Order Long-Step Methods for Solving Linear Complementarity Problems," Annals of Operations Research, Springer, vol. 103(1), pages 149-159, March.
    4. Josef Stoer & Martin Wechs & Shinji Mizuno, 1998. "High Order Infeasible-Interior-Point Methods for Solving Sufficient Linear Complementarity Problems," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 832-862, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoni Chi & M. Seetharama Gowda & Jiyuan Tao, 2019. "The weighted horizontal linear complementarity problem on a Euclidean Jordan algebra," Journal of Global Optimization, Springer, vol. 73(1), pages 153-169, January.
    2. M. Seetharama Gowda, 2019. "Weighted LCPs and interior point systems for copositive linear transformations on Euclidean Jordan algebras," Journal of Global Optimization, Springer, vol. 74(2), pages 285-295, June.
    3. Jingyong Tang & Hongchao Zhang, 2021. "A Nonmonotone Smoothing Newton Algorithm for Weighted Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 189(3), pages 679-715, June.
    4. Xiaoni Chi & Guoqiang Wang, 2021. "A Full-Newton Step Infeasible Interior-Point Method for the Special Weighted Linear Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 108-129, July.
    5. Soodabeh Asadi & Zsolt Darvay & Goran Lesaja & Nezam Mahdavi-Amiri & Florian Potra, 2020. "A Full-Newton Step Interior-Point Method for Monotone Weighted Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 186(3), pages 864-878, September.
    6. Jingyong Tang & Jinchuan Zhou, 2021. "Quadratic convergence analysis of a nonmonotone Levenberg–Marquardt type method for the weighted nonlinear complementarity problem," Computational Optimization and Applications, Springer, vol. 80(1), pages 213-244, September.
    7. Jingyong Tang & Jinchuan Zhou & Hongchao Zhang, 2023. "An Accelerated Smoothing Newton Method with Cubic Convergence for Weighted Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 196(2), pages 641-665, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Behrouz Kheirfam, 2015. "A Corrector–Predictor Path-Following Method for Convex Quadratic Symmetric Cone Optimization," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 246-260, January.
    2. Darvay, Zsolt & Illés, Tibor & Rigó, Petra Renáta, 2022. "Predictor-corrector interior-point algorithm for P*(κ)-linear complementarity problems based on a new type of algebraic equivalent transformation technique," European Journal of Operational Research, Elsevier, vol. 298(1), pages 25-35.
    3. Halicka, Margareta, 2002. "Analyticity of the central path at the boundary point in semidefinite programming," European Journal of Operational Research, Elsevier, vol. 143(2), pages 311-324, December.
    4. G. Wang & C. Yu & K. Teo, 2014. "A full-Newton step feasible interior-point algorithm for $$P_*(\kappa )$$ P ∗ ( κ ) -linear complementarity problems," Journal of Global Optimization, Springer, vol. 59(1), pages 81-99, May.
    5. Soodabeh Asadi & Zsolt Darvay & Goran Lesaja & Nezam Mahdavi-Amiri & Florian Potra, 2020. "A Full-Newton Step Interior-Point Method for Monotone Weighted Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 186(3), pages 864-878, September.
    6. C. K. Sim & G. Zhao, 2008. "Asymptotic Behavior of Helmberg-Kojima-Monteiro (HKM) Paths in Interior-Point Methods for Monotone Semidefinite Linear Complementarity Problems: General Theory," Journal of Optimization Theory and Applications, Springer, vol. 137(1), pages 11-25, April.
    7. Holden, Tom, 2016. "Computation of solutions to dynamic models with occasionally binding constraints," EconStor Preprints 130143, ZBW - Leibniz Information Centre for Economics.
    8. Behrouz Kheirfam, 2014. "A New Complexity Analysis for Full-Newton Step Infeasible Interior-Point Algorithm for Horizontal Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 853-869, June.
    9. Petra Renáta Rigó & Zsolt Darvay, 2018. "Infeasible interior-point method for symmetric optimization using a positive-asymptotic barrier," Computational Optimization and Applications, Springer, vol. 71(2), pages 483-508, November.
    10. Chee-Khian Sim, 2011. "Asymptotic Behavior of Underlying NT Paths in Interior Point Methods for Monotone Semidefinite Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 148(1), pages 79-106, January.
    11. Holden, Tom D., 2016. "Existence, uniqueness and computation of solutions to dynamic models with occasionally binding constraints," EconStor Preprints 127430, ZBW - Leibniz Information Centre for Economics.
    12. H. Mansouri & M. Pirhaji, 2013. "A Polynomial Interior-Point Algorithm for Monotone Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 157(2), pages 451-461, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:64:y:2016:i:2:d:10.1007_s10589-015-9811-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.