IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v57y2014i3p667-684.html
   My bibliography  Save this article

On regularity conditions for complementarity problems

Author

Listed:
  • A. Izmailov
  • A. Kurennoy

Abstract

In the context of complementarity problems, various concepts of solution regularity are known, each of them playing a certain role in the related theoretical and algorithmic developments. Despite the existence of rich literature on this subject, it appears that the exact relations between some of these regularity concepts remained unknown. In this note, we not only summarize the existing results on the subject but also establish the missing relations filling all the gaps in the current understanding of how different regularity concepts relate to each other. In particular, we demonstrate that strong regularity is in fact equivalent to nonsingularity of all matrices in the natural outer estimates of the generalized Jacobians of the most widely used residual mappings for complementarity problems. On the other hand, we show that CD-regularity of the natural residual mapping does not imply even BD-regularity of the Fischer–Burmeister residual mapping. As a result, we provide the complete picture of relations between the most important regularity conditions for mixed complementarity problems, with a special emphasis on those conditions used to justify the related numerical methods. A special attention is paid to the particular cases of a nonlinear complementarity problem and of a Karush–Kuhn–Tucker system. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • A. Izmailov & A. Kurennoy, 2014. "On regularity conditions for complementarity problems," Computational Optimization and Applications, Springer, vol. 57(3), pages 667-684, April.
  • Handle: RePEc:spr:coopap:v:57:y:2014:i:3:p:667-684
    DOI: 10.1007/s10589-013-9604-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-013-9604-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-013-9604-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liqun Qi, 1993. "Convergence Analysis of Some Algorithms for Solving Nonsmooth Equations," Mathematics of Operations Research, INFORMS, vol. 18(1), pages 227-244, February.
    2. Stephen M. Robinson, 1980. "Strongly Regular Generalized Equations," Mathematics of Operations Research, INFORMS, vol. 5(1), pages 43-62, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aram V. Arutyunov & Sergey E. Zhukovskiy, 2023. "Smoothing Procedure for Lipschitzian Equations and Continuity of Solutions," Journal of Optimization Theory and Applications, Springer, vol. 199(1), pages 112-142, October.
    2. A. Izmailov & A. Kurennoy & M. Solodov, 2015. "Local convergence of the method of multipliers for variational and optimization problems under the noncriticality assumption," Computational Optimization and Applications, Springer, vol. 60(1), pages 111-140, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Houduo Qi, 2009. "Local Duality of Nonlinear Semidefinite Programming," Mathematics of Operations Research, INFORMS, vol. 34(1), pages 124-141, February.
    2. L. W. Zhang & Z. Q. Xia, 2001. "Newton-Type Methods for Quasidifferentiable Equations," Journal of Optimization Theory and Applications, Springer, vol. 108(2), pages 439-456, February.
    3. Liang Chen & Anping Liao, 2020. "On the Convergence Properties of a Second-Order Augmented Lagrangian Method for Nonlinear Programming Problems with Inequality Constraints," Journal of Optimization Theory and Applications, Springer, vol. 187(1), pages 248-265, October.
    4. J. Han & D. Sun, 1997. "Newton and Quasi-Newton Methods for Normal Maps with Polyhedral Sets," Journal of Optimization Theory and Applications, Springer, vol. 94(3), pages 659-676, September.
    5. Long, Qiang & Wu, Changzhi & Wang, Xiangyu, 2015. "A system of nonsmooth equations solver based upon subgradient method," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 284-299.
    6. Todd S. Munson & Francisco Facchinei & Michael C. Ferris & Andreas Fischer & Christian Kanzow, 2001. "The Semismooth Algorithm for Large Scale Complementarity Problems," INFORMS Journal on Computing, INFORMS, vol. 13(4), pages 294-311, November.
    7. Michael Patriksson & R. Tyrrell Rockafellar, 2002. "A Mathematical Model and Descent Algorithm for Bilevel Traffic Management," Transportation Science, INFORMS, vol. 36(3), pages 271-291, August.
    8. Fatemeh Abdi & Fatemeh Shakeri, 2017. "A New Descent Method for Symmetric Non-monotone Variational Inequalities with Application to Eigenvalue Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 173(3), pages 923-940, June.
    9. M. Durea & R. Strugariu, 2011. "On parametric vector optimization via metric regularity of constraint systems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(3), pages 409-425, December.
    10. John Duggan & Tasos Kalandrakis, 2011. "A Newton collocation method for solving dynamic bargaining games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 36(3), pages 611-650, April.
    11. H. Xu & B. M. Glover, 1997. "New Version of the Newton Method for Nonsmooth Equations," Journal of Optimization Theory and Applications, Springer, vol. 93(2), pages 395-415, May.
    12. Fabiana R. Oliveira & Orizon P. Ferreira & Gilson N. Silva, 2019. "Newton’s method with feasible inexact projections for solving constrained generalized equations," Computational Optimization and Applications, Springer, vol. 72(1), pages 159-177, January.
    13. Sanja Rapajić & Zoltan Papp, 2017. "A nonmonotone Jacobian smoothing inexact Newton method for NCP," Computational Optimization and Applications, Springer, vol. 66(3), pages 507-532, April.
    14. G. L. Zhou & L. Caccetta, 2008. "Feasible Semismooth Newton Method for a Class of Stochastic Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 379-392, November.
    15. Nguyen Qui, 2014. "Stability for trust-region methods via generalized differentiation," Journal of Global Optimization, Springer, vol. 59(1), pages 139-164, May.
    16. Michael Patriksson & R. Tyrrell Rockafellar, 2003. "Sensitivity Analysis of Aggregated Variational Inequality Problems, with Application to Traffic Equilibria," Transportation Science, INFORMS, vol. 37(1), pages 56-68, February.
    17. C. Kanzow & H. Qi & L. Qi, 2003. "On the Minimum Norm Solution of Linear Programs," Journal of Optimization Theory and Applications, Springer, vol. 116(2), pages 333-345, February.
    18. Kenji Ueda & Nobuo Yamashita, 2012. "Global Complexity Bound Analysis of the Levenberg–Marquardt Method for Nonsmooth Equations and Its Application to the Nonlinear Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 152(2), pages 450-467, February.
    19. J. V. Outrata, 1999. "Optimality Conditions for a Class of Mathematical Programs with Equilibrium Constraints," Mathematics of Operations Research, INFORMS, vol. 24(3), pages 627-644, August.
    20. A. L. Dontchev, 1998. "A Proof of the Necessity of Linear Independence Condition and Strong Second-Order Sufficient Optimality Condition for Lipschitzian Stability in Nonlinear Programming," Journal of Optimization Theory and Applications, Springer, vol. 98(2), pages 467-473, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:57:y:2014:i:3:p:667-684. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.