IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v54y2013i2p417-440.html
   My bibliography  Save this article

A cyclic projected gradient method

Author

Listed:
  • Simon Setzer

    ()

  • Gabriele Steidl

    ()

  • Jan Morgenthaler

    ()

Abstract

In recent years, convex optimization methods were successfully applied for various image processing tasks and a large number of first-order methods were designed to minimize the corresponding functionals. Interestingly, it was shown recently in Grewenig et al. ( 2010 ) that the simple idea of so-called “superstep cycles” leads to very efficient schemes for time-dependent (parabolic) image enhancement problems as well as for steady state (elliptic) image compression tasks. The “superstep cycles” approach is similar to the nonstationary (cyclic) Richardson method which has been around for over sixty years. In this paper, we investigate the incorporation of superstep cycles into the projected gradient method. We show for two problems in compressive sensing and image processing, namely the LASSO approach and the Rudin-Osher-Fatemi model that the resulting simple cyclic projected gradient algorithm can numerically compare with various state-of-the-art first-order algorithms. However, due to the nonlinear projection within the algorithm convergence proofs even under restrictive assumptions on the linear operators appear to be hard. We demonstrate the difficulties by studying the simplest case of a two-cycle algorithm in ℝ 2 with projections onto the Euclidean ball. Copyright Springer Science+Business Media New York 2013

Suggested Citation

  • Simon Setzer & Gabriele Steidl & Jan Morgenthaler, 2013. "A cyclic projected gradient method," Computational Optimization and Applications, Springer, vol. 54(2), pages 417-440, March.
  • Handle: RePEc:spr:coopap:v:54:y:2013:i:2:p:417-440
    DOI: 10.1007/s10589-012-9525-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-012-9525-4
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:54:y:2013:i:2:p:417-440. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.