IDEAS home Printed from
   My bibliography  Save this article

Computational optimization strategies for the simulation of random media and components


  • Edoardo Patelli


  • Gerhart Schuëller


In this paper efficient computational strategies are presented to speed-up the analysis of random media and components. In particular, a Hybrid Stochastic Optimization (HSO) tool, based on the synergy between various algorithms, i.e. Genetic Algorithms, Simulated Annealing as well as Tabu-list is suggested to reconstruct a set of microstructures starting from probabilistic descriptors. The subsequent analysis (e.g. Finite Element analysis) can be performed to obtain the desired macroscopic quantity of interest and, providing a link between the micro- and the macro-scale. Different computational speed-up strategies are also presented. The proposed simulation approach is highly parallelizable, flexible and scalable. It can be adopted by other fields as well where an optimization analysis is required and a set of different solutions should be identified in order to perform computational experiments. Numerical examples demonstrate the applicability of the proposed strategies for realistic problems. Copyright Springer Science+Business Media, LLC 2012

Suggested Citation

  • Edoardo Patelli & Gerhart Schuëller, 2012. "Computational optimization strategies for the simulation of random media and components," Computational Optimization and Applications, Springer, vol. 53(3), pages 903-931, December.
  • Handle: RePEc:spr:coopap:v:53:y:2012:i:3:p:903-931 DOI: 10.1007/s10589-012-9463-1

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. repec:eee:reensy:v:91:y:2006:i:9:p:977-991 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:53:y:2012:i:3:p:903-931. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.