IDEAS home Printed from
   My bibliography  Save this article

Computing the variance of tour costs over the solution space of the TSP in polynomial time


  • Paul Sutcliffe


  • Andrew Solomon


  • Jenny Edwards



We give an O(n 2 ) time algorithm to find the population variance of tour costs over the solution space of the n city symmetric Traveling Salesman Problem (TSP). The algorithm has application in both the stochastic case, where the problem is specified in terms of edge costs which are pairwise independently distributed random variables with known mean and variance, and the numeric edge cost case. We apply this result to provide empirical evidence that, in a range of real world problem sets, the optimal tour cost correlates with a simple function of the mean and variance of tour costs. Copyright Springer Science+Business Media, LLC 2012

Suggested Citation

  • Paul Sutcliffe & Andrew Solomon & Jenny Edwards, 2012. "Computing the variance of tour costs over the solution space of the TSP in polynomial time," Computational Optimization and Applications, Springer, vol. 53(3), pages 711-728, December.
  • Handle: RePEc:spr:coopap:v:53:y:2012:i:3:p:711-728
    DOI: 10.1007/s10589-012-9472-0

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:53:y:2012:i:3:p:711-728. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.