IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v40y2025i3d10.1007_s00180-024-01544-8.html
   My bibliography  Save this article

Generalized linear model based on latent factors and supervised components

Author

Listed:
  • Julien Gibaud

    (Université de Montpellier)

  • Xavier Bry

    (Université de Montpellier)

  • Catherine Trottier

    (Université de Montpellier
    Université Paul-Valéry Montpellier 3)

Abstract

In a context of component-based multivariate modeling we propose to model the residual dependence of the responses. Each response of a response vector is assumed to depend, through a Generalized Linear Model, on a set of explanatory variables. The vast majority of explanatory variables are partitioned into conceptually homogeneous variable groups, viewed as explanatory themes. Variables in themes are supposed many and some of them are highly correlated or even collinear. Thus, generalized linear regression demands dimension reduction and regularization with respect to each theme. Besides them, we consider a small set of “additional” covariates not conceptually linked to the themes, and demanding no regularization. Supervised Component Generalized Linear Regression proposed to both regularize and reduce the dimension of the explanatory space by searching each theme for an appropriate number of orthogonal components, which both contribute to predict the responses and capture relevant structural information in themes. In this paper, we introduce random latent variables (a.k.a. factors) so as to model the covariance matrix of the linear predictors of the responses conditional on the components. To estimate the model, we present an algorithm combining supervised component-based model estimation with factor model estimation. This methodology is tested on simulated data and then applied to an agricultural ecology dataset.

Suggested Citation

  • Julien Gibaud & Xavier Bry & Catherine Trottier, 2025. "Generalized linear model based on latent factors and supervised components," Computational Statistics, Springer, vol. 40(3), pages 1475-1516, March.
  • Handle: RePEc:spr:compst:v:40:y:2025:i:3:d:10.1007_s00180-024-01544-8
    DOI: 10.1007/s00180-024-01544-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-024-01544-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-024-01544-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xavier Bry & Théo Simac & Salah Eddine El Ghachi & Philippe Antoine, 2020. "Bridging data exploration and modeling in event-history analysis: the supervised-component Cox regression," Mathematical Population Studies, Taylor & Francis Journals, vol. 27(3), pages 139-174, July.
    2. Bry, X. & Trottier, C. & Verron, T. & Mortier, F., 2013. "Supervised component generalized linear regression using a PLS-extension of the Fisher scoring algorithm," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 47-60.
    3. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    4. Jenni Niku & Wesley Brooks & Riki Herliansyah & Francis K C Hui & Sara Taskinen & David I Warton, 2019. "Efficient estimation of generalized linear latent variable models," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-20, May.
    5. Jenni Niku & David I. Warton & Francis K. C. Hui & Sara Taskinen, 2017. "Generalized Linear Latent Variable Models for Multivariate Count and Biomass Data in Ecology," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(4), pages 498-522, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jenni Niku & Francis K. C. Hui & Sara Taskinen & David I. Warton, 2021. "Analyzing environmental‐trait interactions in ecological communities with fourth‐corner latent variable models," Environmetrics, John Wiley & Sons, Ltd., vol. 32(6), September.
    2. Ting Fung Ma & Fangfang Wang & Jun Zhu, 2023. "On generalized latent factor modeling and inference for high‐dimensional binomial data," Biometrics, The International Biometric Society, vol. 79(3), pages 2311-2320, September.
    3. Miriam Aparicio, 2021. "Resiliency and Cooperation or Regarding Social and Collective Competencies for University Achievement. An Analysis from a Systemic Perspective," European Journal of Social Sciences Education and Research Articles, Revistia Research and Publishing, vol. 8, ejser_v8_.
    4. Yunpeng Zhao & Qing Pan & Chengan Du, 2019. "Logistic regression augmented community detection for network data with application in identifying autism‐related gene pathways," Biometrics, The International Biometric Society, vol. 75(1), pages 222-234, March.
    5. Wu, Han-Ming & Tien, Yin-Jing & Chen, Chun-houh, 2010. "GAP: A graphical environment for matrix visualization and cluster analysis," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 767-778, March.
    6. José E. Chacón, 2021. "Explicit Agreement Extremes for a 2 × 2 Table with Given Marginals," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 257-263, July.
    7. F. Marta L. Di Lascio & Andrea Menapace & Roberta Pappadà, 2024. "A spatially‐weighted AMH copula‐based dissimilarity measure for clustering variables: An application to urban thermal efficiency," Environmetrics, John Wiley & Sons, Ltd., vol. 35(1), February.
    8. Yifan Zhu & Chongzhi Di & Ying Qing Chen, 2019. "Clustering Functional Data with Application to Electronic Medication Adherence Monitoring in HIV Prevention Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(2), pages 238-261, July.
    9. Irene Vrbik & Paul McNicholas, 2015. "Fractionally-Supervised Classification," Journal of Classification, Springer;The Classification Society, vol. 32(3), pages 359-381, October.
    10. Maurizio Vichi & Carlo Cavicchia & Patrick J. F. Groenen, 2022. "Hierarchical Means Clustering," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 553-577, November.
    11. Batool, Fatima & Hennig, Christian, 2021. "Clustering with the Average Silhouette Width," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    12. Patrick D. Shay & Stephen S. Farnsworth Mick, 2017. "Clustered and distinct: a taxonomy of local multihospital systems," Health Care Management Science, Springer, vol. 20(3), pages 303-315, September.
    13. Roberto Rocci & Stefano Antonio Gattone & Roberto Di Mari, 2018. "A data driven equivariant approach to constrained Gaussian mixture modeling," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 235-260, June.
    14. Yue Wan & Jialu Wu & Tingjun Hou & Chang-Yu Hsieh & Xiaowei Jia, 2025. "Multi-channel learning for integrating structural hierarchies into context-dependent molecular representation," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    15. Wan-Lun Wang, 2019. "Mixture of multivariate t nonlinear mixed models for multiple longitudinal data with heterogeneity and missing values," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 196-222, March.
    16. Matthijs Warrens, 2010. "Inequalities Between Kappa and Kappa-Like Statistics for k×k Tables," Psychometrika, Springer;The Psychometric Society, vol. 75(1), pages 176-185, March.
    17. Redivo, Edoardo & Nguyen, Hien D. & Gupta, Mayetri, 2020. "Bayesian clustering of skewed and multimodal data using geometric skewed normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    18. Jerzy Korzeniewski, 2016. "New Method Of Variable Selection For Binary Data Cluster Analysis," Statistics in Transition New Series, Polish Statistical Association, vol. 17(2), pages 295-304, June.
    19. Meng, Ming & Mander, Sarah & Zhao, Xiaoli & Niu, Dongxiao, 2016. "Have market-oriented reforms improved the electricity generation efficiency of China's thermal power industry? An empirical analysis," Energy, Elsevier, vol. 114(C), pages 734-741.
    20. Zhu, Xuwen & Melnykov, Volodymyr, 2018. "Manly transformation in finite mixture modeling," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 190-208.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:40:y:2025:i:3:d:10.1007_s00180-024-01544-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.