IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v40y2025i2d10.1007_s00180-024-01519-9.html
   My bibliography  Save this article

Trend of high dimensional time series estimation using low-rank matrix factorization: heuristics and numerical experiments via the TrendTM package

Author

Listed:
  • Emilie Lebarbier

    (Univ. Paris Nanterre)

  • Nicolas Marie

    (Univ. Paris Nanterre)

  • Amélie Rosier

    (Univ. Paris Nanterre
    ESME Sudria)

Abstract

This article focuses on the practical issue of a recent theoretical method proposed for trend estimation in high dimensional time series. This method falls within the scope of the low-rank matrix factorization methods in which the temporal structure is taken into account. It consists of minimizing a penalized criterion, theoretically efficient but which depends on two constants to be chosen in practice. We propose a two-step strategy to solve this question based on two different known heuristics. The performance and a comparison of the strategies are studied through an important simulation study in various scenarios. In order to make the estimation method with the best strategy available to the community, we implemented the method in an R package TrendTM which is presented and used here. Finally, we give a geometric interpretation of the results by linking it to PCA and use the results to solve a high-dimensional curve clustering problem. The package is available on CRAN.

Suggested Citation

  • Emilie Lebarbier & Nicolas Marie & Amélie Rosier, 2025. "Trend of high dimensional time series estimation using low-rank matrix factorization: heuristics and numerical experiments via the TrendTM package," Computational Statistics, Springer, vol. 40(2), pages 1097-1122, February.
  • Handle: RePEc:spr:compst:v:40:y:2025:i:2:d:10.1007_s00180-024-01519-9
    DOI: 10.1007/s00180-024-01519-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-024-01519-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-024-01519-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Julien Jacques & Cristian Preda, 2014. "Functional data clustering: a survey," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(3), pages 231-255, September.
    2. Xavier Collilieux & Emilie Lebarbier & Stéphane Robin, 2019. "A factor model approach for the joint segmentation with between‐series correlation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 46(3), pages 686-705, September.
    3. Zhaoxing Gao & Ruey S. Tsay, 2022. "Modeling High-Dimensional Time Series: A Factor Model With Dynamically Dependent Factors and Diverging Eigenvalues," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(539), pages 1398-1414, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhiyun Fan & Xiaoyu Zhang & Mingyang Chen & Di Wang, 2025. "Matrix Time Series Modeling: A Hybrid Framework Combining Autoregression and Common Factors," Papers 2503.05340, arXiv.org.
    2. Golovkine, Steven & Klutchnikoff, Nicolas & Patilea, Valentin, 2022. "Clustering multivariate functional data using unsupervised binary trees," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    3. Fang, Puyi & Gao, Zhaoxing & Tsay, Ruey S., 2023. "Supervised kernel principal component analysis for forecasting," Finance Research Letters, Elsevier, vol. 58(PA).
    4. Fang, Kuangnan & Chen, Yuanxing & Ma, Shuangge & Zhang, Qingzhao, 2022. "Biclustering analysis of functionals via penalized fusion," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    5. Xin Yao & Yuanyuan Cheng & Li Zhou & Malin Song, 2022. "Green efficiency performance analysis of the logistics industry in China: based on a kind of machine learning methods," Annals of Operations Research, Springer, vol. 308(1), pages 727-752, January.
    6. Boudreault, Jeremie & Bergeron, Normand E & St-Hilaire, Andre & Chebana, Fateh, 2022. "A new look at habitat suitability curves through functional data analysis," Ecological Modelling, Elsevier, vol. 467(C).
    7. Ja‐Yoon Jang & Hee‐Seok Oh & Yaeji Lim & Ying Kuen Cheung, 2021. "Ensemble clustering for step data via binning," Biometrics, The International Biometric Society, vol. 77(1), pages 293-304, March.
    8. Alessandro Casa & Charles Bouveyron & Elena Erosheva & Giovanna Menardi, 2021. "Co-clustering of Time-Dependent Data via the Shape Invariant Model," Journal of Classification, Springer;The Classification Society, vol. 38(3), pages 626-649, October.
    9. Shan Zhong & David B. Hitchcock, 2024. "Functional clustering of fictional narratives using Vonnegut curves," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 18(4), pages 1045-1066, December.
    10. Snježana Majstorović & Kristian Sabo & Johannes Jung & Matija Klarić, 2018. "Spectral methods for growth curve clustering," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(3), pages 715-737, September.
    11. C. Denis & E. Lebarbier & C. Lévy‐Leduc & O. Martin & L. Sansonnet, 2020. "A novel regularized approach for functional data clustering: an application to milking kinetics in dairy goats," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(3), pages 623-640, June.
    12. Ramón Giraldo & William Caballero & Jesús Camacho-Tamayo, 2018. "Mantel test for spatial functional data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(1), pages 21-39, January.
    13. Vogt, Michael & Linton, Oliver, 2020. "Multiscale clustering of nonparametric regression curves," Journal of Econometrics, Elsevier, vol. 216(1), pages 305-325.
    14. Wang, Bingling & Li, Yingxing & Härdle, Wolfgang Karl, 2022. "K-expectiles clustering," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    15. Mirosław Krzyśko & Łukasz Smaga, 2024. "Application of distance standard deviation in functional data analysis," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 18(2), pages 431-454, June.
    16. Christian Acal & Ana M. Aguilera & Manuel Escabias, 2020. "New Modeling Approaches Based on Varimax Rotation of Functional Principal Components," Mathematics, MDPI, vol. 8(11), pages 1-15, November.
    17. Elvira Romano & Jorge Mateu & Ramon Giraldo, 2015. "On the performance of two clustering methods for spatial functional data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(4), pages 467-492, October.
    18. Cristina Anton & Iain Smith, 2024. "Model-based clustering of functional data via mixtures of t distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 18(3), pages 563-595, September.
    19. Yao, Binhong & Li, Peixing, 2023. "Covariance estimation error of incomplete functional data under RKHS framework," Applied Mathematics and Computation, Elsevier, vol. 443(C).
    20. Mijeong Kim & Shili Lin, 2020. "Characterization of histone modification patterns and prediction of novel promoters using functional principal component analysis," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-16, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:40:y:2025:i:2:d:10.1007_s00180-024-01519-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.