IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v39y2024i2d10.1007_s00180-022-01292-7.html
   My bibliography  Save this article

Feature selection algorithms in generalized additive models under concurvity

Author

Listed:
  • László Kovács

    (Corvinus University of Budapest)

Abstract

In this paper, the properties of 10 different feature selection algorithms for generalized additive models (GAMs) are compared on one simulated and two real-world datasets under concurvity. Concurvity can be interpreted as a redundancy in the feature set of a GAM. Like multicollinearity in linear models, concurvity causes unstable parameter estimates in GAMs and makes the marginal effect of features harder interpret. Feature selection algorithms for GAMs can be separated into four clusters: stepwise, boosting, regularization and concurvity controlled methods. Our numerical results show that algorithms with no constraints on concurvity tend to select a large feature set, without significant improvements in predictive performance compared to a more parsimonious feature set. A large feature set is accompanied by harmful concurvity in the proposed models. To tackle the concurvity phenomenon, recent feature selection algorithms such as the mRMR and the HSIC-Lasso incorporated some constraints on concurvity in their objective function. However, these algorithms interpret concurvity as pairwise non-linear relationship between features, so they do not account for the case when a feature can be accurately estimated as a multivariate function of several other features. This is confirmed by our numerical results. Our own solution to the problem, a hybrid genetic–harmony search algorithm (HA) introduces constrains on multivariate concurvity directly. Due to this constraint, the HA proposes a small and not redundant feature set with predictive performance similar to that of models with far more features.

Suggested Citation

  • László Kovács, 2024. "Feature selection algorithms in generalized additive models under concurvity," Computational Statistics, Springer, vol. 39(2), pages 461-493, April.
  • Handle: RePEc:spr:compst:v:39:y:2024:i:2:d:10.1007_s00180-022-01292-7
    DOI: 10.1007/s00180-022-01292-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-022-01292-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-022-01292-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Simon N. Wood, 2011. "Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(1), pages 3-36, January.
    2. Augustin, Nicole H. & Sauleau, Erik-André & Wood, Simon N., 2012. "On quantile quantile plots for generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2404-2409.
    3. Gerhard Tutz & Harald Binder, 2006. "Generalized Additive Modeling with Implicit Variable Selection by Likelihood-Based Boosting," Biometrics, The International Biometric Society, vol. 62(4), pages 961-971, December.
    4. Schmid, Matthias & Hothorn, Torsten, 2008. "Boosting additive models using component-wise P-Splines," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 298-311, December.
    5. Marra, Giampiero & Wood, Simon N., 2011. "Practical variable selection for generalized additive models," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2372-2387, July.
    6. Belitz, Christiane & Lang, Stefan, 2008. "Simultaneous selection of variables and smoothing parameters in structured additive regression models," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 61-81, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simon N. Wood, 2020. "Inference and computation with generalized additive models and their extensions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 307-339, June.
    2. Marra, Giampiero & Wood, Simon N., 2011. "Practical variable selection for generalized additive models," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2372-2387, July.
    3. Fabian Scheipl & Thomas Kneib & Ludwig Fahrmeir, 2013. "Penalized likelihood and Bayesian function selection in regression models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(4), pages 349-385, October.
    4. Emiko Dupont & Nicole H. Augustin, 2024. "Spatial Confounding and Spatial+ for Nonlinear Covariate Effects," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(3), pages 455-470, September.
    5. Christina Kassara & Christos Barboutis & Anastasios Bounas, 2025. "Favorable stopover sites and fuel load dynamics of spring bird migrants under a changing climate," Climatic Change, Springer, vol. 178(1), pages 1-19, January.
    6. Simon N. Wood & Natalya Pya & Benjamin Säfken, 2016. "Smoothing Parameter and Model Selection for General Smooth Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1548-1563, October.
    7. Juan Armando Torres Munguía, 2018. "What is behind homicide gender gaps in Mexico? A spatial semiparametric approach," Ibero America Institute for Econ. Research (IAI) Discussion Papers 236, Ibero-America Institute for Economic Research.
    8. Gressani, Oswaldo & Lambert, Philippe, 2021. "Laplace approximations for fast Bayesian inference in generalized additive models based on P-splines," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).
    9. Hendrik van der Wurp & Andreas Groll, 2023. "Introducing LASSO-type penalisation to generalised joint regression modelling for count data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(1), pages 127-151, March.
    10. Lee, Dae-Jin & Durbán, María & Eilers, Paul, 2013. "Efficient two-dimensional smoothing with P-spline ANOVA mixed models and nested bases," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 22-37.
    11. Umlauf, Nikolaus & Adler, Daniel & Kneib, Thomas & Lang, Stefan & Zeileis, Achim, 2015. "Structured Additive Regression Models: An R Interface to BayesX," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i21).
    12. Roland Langrock & Timo Adam & Vianey Leos‐Barajas & Sina Mews & David L. Miller & Yannis P. Papastamatiou, 2018. "Spline‐based nonparametric inference in general state‐switching models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(3), pages 179-200, August.
    13. Kaixu Yang & Tapabrata Maiti, 2022. "Ultrahigh‐dimensional generalized additive model: Unified theory and methods," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 917-942, September.
    14. Benjamin Hofner & Torsten Hothorn & Thomas Kneib, 2013. "Variable selection and model choice in structured survival models," Computational Statistics, Springer, vol. 28(3), pages 1079-1101, June.
    15. Umberto Amato & Anestis Antoniadis & Italia De Feis, 2016. "Additive model selection," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(4), pages 519-564, November.
    16. François Freddy Ateba & Issaka Sagara & Nafomon Sogoba & Mahamoudou Touré & Drissa Konaté & Sory Ibrahim Diawara & Séidina Aboubacar Samba Diakité & Ayouba Diarra & Mamadou D. Coulibaly & Mathias Dolo, 2020. "Spatio-Temporal Dynamic of Malaria Incidence: A Comparison of Two Ecological Zones in Mali," IJERPH, MDPI, vol. 17(13), pages 1-21, June.
    17. Fleming, Alyson H. & Yack, Tina & Redfern, Jessica V. & Becker, Elizabeth A. & Moore, Thomas J. & Barlow, Jay, 2018. "Combining acoustic and visual detections in habitat models of Dall’s porpoise," Ecological Modelling, Elsevier, vol. 384(C), pages 198-208.
    18. McKay Curtis, S. & Banerjee, Sayantan & Ghosal, Subhashis, 2014. "Fast Bayesian model assessment for nonparametric additive regression," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 347-358.
    19. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    20. Gerhard Tutz & Moritz Berger, 2018. "Tree-structured modelling of categorical predictors in generalized additive regression," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 737-758, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:39:y:2024:i:2:d:10.1007_s00180-022-01292-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.