IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v38y2023i2d10.1007_s00180-022-01254-z.html
   My bibliography  Save this article

A semi-parametric approach to feature selection in high-dimensional linear regression models

Author

Listed:
  • Yuyang Liu

    (Shanghai Jiao Tong University)

  • Pengfei Pi

    (Shanghai Jiao Tong University)

  • Shan Luo

    (Shanghai Jiao Tong University)

Abstract

We propose a novel semi-parametric approach to feature selection in high-dimensional linear regression models. This sequential procedure is robust to the unknown error distribution including heavy-tailed distributions. At each step of this procedure, we add the feature with the largest absolute value of the estimated partial profile score into the model. The procedure terminates when a model selection criterion is met. Theoretically, we establish this procedure’s selection consistency under regular conditions. Computationally, extensive numerical studies together with a real data application are provided to demonstrate its advantage over existing representative methods in terms of selection accuracy and computation cost.

Suggested Citation

  • Yuyang Liu & Pengfei Pi & Shan Luo, 2023. "A semi-parametric approach to feature selection in high-dimensional linear regression models," Computational Statistics, Springer, vol. 38(2), pages 979-1000, June.
  • Handle: RePEc:spr:compst:v:38:y:2023:i:2:d:10.1007_s00180-022-01254-z
    DOI: 10.1007/s00180-022-01254-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-022-01254-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-022-01254-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiahua Chen & Zehua Chen, 2008. "Extended Bayesian information criteria for model selection with large model spaces," Biometrika, Biometrika Trust, vol. 95(3), pages 759-771.
    2. Lan Wang & Bo Peng & Jelena Bradic & Runze Li & Yunan Wu, 2020. "A Tuning-free Robust and Efficient Approach to High-dimensional Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(532), pages 1700-1714, December.
    3. Wang, Hansheng & Li, Guodong & Jiang, Guohua, 2007. "Robust Regression Shrinkage and Consistent Variable Selection Through the LAD-Lasso," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 347-355, July.
    4. Shan Luo & Zehua Chen, 2014. "Sequential Lasso Cum EBIC for Feature Selection With Ultra-High Dimensional Feature Space," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1229-1240, September.
    5. Jianqing Fan & Quefeng Li & Yuyan Wang, 2017. "Estimation of high dimensional mean regression in the absence of symmetry and light tail assumptions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 247-265, January.
    6. Brent Johnson & Limin Peng, 2008. "Rank-based variable selection," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(3), pages 241-252.
    7. Asuman Turkmen & Omer Ozturk, 2014. "Rank-based ridge estimation in multiple linear regression," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(4), pages 737-754, December.
    8. Yawei He & Zehua Chen, 2016. "The EBIC and a sequential procedure for feature selection in interactive linear models with high-dimensional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(1), pages 155-180, February.
    9. Lan Wang & Bo Peng & Jelena Bradic & Runze Li & Yunan Wu, 2020. "Rejoinder to “A Tuning-Free Robust and Efficient Approach to High-Dimensional Regression”," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(532), pages 1726-1729, December.
    10. Jianqing Fan & Cong Ma & Kaizheng Wang, 2020. "Comment on “A Tuning-Free Robust and Efficient Approach to High-Dimensional Regression”," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(532), pages 1720-1725, December.
    11. Lan Wang & Runze Li, 2009. "Weighted Wilcoxon-Type Smoothly Clipped Absolute Deviation Method," Biometrics, The International Biometric Society, vol. 65(2), pages 564-571, June.
    12. Wang, Lie, 2013. "The L1 penalized LAD estimator for high dimensional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 135-151.
    13. Yang, Hu & Guo, Chaohui & Lv, Jing, 2015. "SCAD penalized rank regression with a diverging number of parameters," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 321-333.
    14. Zhou, Yeqing & Liu, Jingyuan & Zhu, Liping, 2020. "Test for conditional independence with application to conditional screening," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
    15. Tingni Sun & Cun-Hui Zhang, 2012. "Scaled sparse linear regression," Biometrika, Biometrika Trust, vol. 99(4), pages 879-898.
    16. Wang, Hansheng, 2009. "Forward Regression for Ultra-High Dimensional Variable Screening," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1512-1524.
    17. Qiang Sun & Wen-Xin Zhou & Jianqing Fan, 2020. "Adaptive Huber Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 254-265, January.
    18. Xiudi Li & Ali Shojaie, 2020. "Discussion of “A Tuning-Free Robust and Efficient Approach to High-Dimensional Regression”," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(532), pages 1717-1719, December.
    19. Lan Wang & Yichao Wu & Runze Li, 2012. "Quantile Regression for Analyzing Heterogeneity in Ultra-High Dimension," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 214-222, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Umberto Amato & Anestis Antoniadis & Italia De Feis & Irene Gijbels, 2021. "Penalised robust estimators for sparse and high-dimensional linear models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 1-48, March.
    2. Honda, Toshio & 本田, 敏雄 & Lin, Chien-Tong, 2022. "Forward variable selection for ultra-high dimensional quantile regression models," Discussion Papers 2021-02, Graduate School of Economics, Hitotsubashi University.
    3. Canhong Wen & Zhenduo Li & Ruipeng Dong & Yijin Ni & Wenliang Pan, 2023. "Simultaneous Dimension Reduction and Variable Selection for Multinomial Logistic Regression," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1044-1060, September.
    4. Eun Ryung Lee & Seyoung Park & Sang Kyu Lee & Hyokyoung G. Hong, 2023. "Quantile forward regression for high-dimensional survival data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(4), pages 769-806, October.
    5. Mingyang Ren & Sanguo Zhang & Junhui Wang, 2023. "Consistent estimation of the number of communities via regularized network embedding," Biometrics, The International Biometric Society, vol. 79(3), pages 2404-2416, September.
    6. Jack Jewson & David Rossell, 2022. "General Bayesian loss function selection and the use of improper models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1640-1665, November.
    7. Wang, Yibo & Karunamuni, Rohana J., 2022. "High-dimensional robust regression with Lq-loss functions," Computational Statistics & Data Analysis, Elsevier, vol. 176(C).
    8. Toshio Honda & Chien-Tong Lin, 2023. "Forward variable selection for ultra-high dimensional quantile regression models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(3), pages 393-424, June.
    9. Han, Dongxiao & Huang, Jian & Lin, Yuanyuan & Shen, Guohao, 2022. "Robust post-selection inference of high-dimensional mean regression with heavy-tailed asymmetric or heteroskedastic errors," Journal of Econometrics, Elsevier, vol. 230(2), pages 416-431.
    10. Zhang, Shucong & Zhou, Yong, 2018. "Variable screening for ultrahigh dimensional heterogeneous data via conditional quantile correlations," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 1-13.
    11. Hong, Hyokyoung G. & Zheng, Qi & Li, Yi, 2019. "Forward regression for Cox models with high-dimensional covariates," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 268-290.
    12. Smucler, Ezequiel & Yohai, Victor J., 2017. "Robust and sparse estimators for linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 116-130.
    13. Eun Ryung Lee & Hohsuk Noh & Byeong U. Park, 2014. "Model Selection via Bayesian Information Criterion for Quantile Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 216-229, March.
    14. Christis Katsouris, 2023. "High Dimensional Time Series Regression Models: Applications to Statistical Learning Methods," Papers 2308.16192, arXiv.org.
    15. Zehua Chen & Yiwei Jiang, 2020. "A two-stage sequential conditional selection approach to sparse high-dimensional multivariate regression models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(1), pages 65-90, February.
    16. Akira Shinkyu, 2023. "Forward Selection for Feature Screening and Structure Identification in Varying Coefficient Models," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 485-511, February.
    17. Luo, Bin & Gao, Xiaoli, 2022. "High-dimensional robust approximated M-estimators for mean regression with asymmetric data," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    18. Chen, Huangyue & Kong, Lingchen & Shang, Pan & Pan, Shanshan, 2020. "Safe feature screening rules for the regularized Huber regression," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    19. Ke Yu & Shan Luo, 2022. "A sequential feature selection procedure for high-dimensional Cox proportional hazards model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(6), pages 1109-1142, December.
    20. Shan Luo & Zehua Chen, 2014. "Sequential Lasso Cum EBIC for Feature Selection With Ultra-High Dimensional Feature Space," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1229-1240, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:38:y:2023:i:2:d:10.1007_s00180-022-01254-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.