IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v38y2023i2d10.1007_s00180-022-01250-3.html
   My bibliography  Save this article

Estimation of logistic regression with covariates missing separately or simultaneously via multiple imputation methods

Author

Listed:
  • Shen-Ming Lee

    (Feng Chia University)

  • Truong-Nhat Le

    (Feng Chia University
    Ton Duc Thang University)

  • Phuoc-Loc Tran

    (Can Tho University)

  • Chin-Shang Li

    (University at Buffalo)

Abstract

Logistic regression is a standard model in many studies of binary outcome data, and the analysis of missing data in this model is a fascinating topic. Based on the idea of Wang D, Chen SX (2009) Empirical likelihood for estimating equations with missing values. Ann Stat, 37:490–517, proposed are two different types of multiple imputation (MI) estimation methods, which each use three empirical conditional distribution functions to generate random values to impute missing data, to estimate the parameters of logistic regression with covariates missing at random (MAR) separately or simultaneously by using the estimating equations of Fay RE (1996) Alternative paradigms for the analysis of imputed survey data. J Am Stat Assoc, 91:490–498. The derivation of the two proposed MI estimation methods is under the assumption of MAR separately or simultaneously and exclusively for categorical/discrete data. The two proposed methods are computationally effective, as evidenced by simulation studies. They have a quite similar efficiency and outperform the complete-case, semiparametric inverse probability weighting, validation likelihood, and random forest MI by chained equations methods. Although the two proposed methods are comparable with the joint conditional likelihood (JCL) method, they have more straightforward calculations and shorter computing times compared to the JCL and MICE methods. Two real data examples are used to illustrate the applicability of the proposed methods.

Suggested Citation

  • Shen-Ming Lee & Truong-Nhat Le & Phuoc-Loc Tran & Chin-Shang Li, 2023. "Estimation of logistic regression with covariates missing separately or simultaneously via multiple imputation methods," Computational Statistics, Springer, vol. 38(2), pages 899-934, June.
  • Handle: RePEc:spr:compst:v:38:y:2023:i:2:d:10.1007_s00180-022-01250-3
    DOI: 10.1007/s00180-022-01250-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-022-01250-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-022-01250-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van Buuren, Stef & Groothuis-Oudshoorn, Karin, 2011. "mice: Multivariate Imputation by Chained Equations in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 45(i03).
    2. Jiang, Wei & Josse, Julie & Lavielle, Marc, 2020. "Logistic regression with missing covariates—Parameter estimation, model selection and prediction within a joint-modeling framework," Computational Statistics & Data Analysis, Elsevier, vol. 145(C).
    3. Shen‐Ming Lee & Wen‐Han Hwang & Jean de Dieu Tapsoba, 2016. "Estimation in closed capture–recapture models when covariates are missing at random," Biometrics, The International Biometric Society, vol. 72(4), pages 1294-1304, December.
    4. Shen-Ming Lee & T. Martin Lukusa & Chin-Shang Li, 2020. "Estimation of a zero-inflated Poisson regression model with missing covariates via nonparametric multiple imputation methods," Computational Statistics, Springer, vol. 35(2), pages 725-754, June.
    5. Shen-Ming Lee & Chin-Shang Li & Shu-Hui Hsieh & Li-Hui Huang, 2012. "Semiparametric estimation of logistic regression model with missing covariates and outcome," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(5), pages 621-653, July.
    6. T. Martin Lukusa & Shen-Ming Lee & Chin-Shang Li, 2016. "Semiparametric estimation of a zero-inflated Poisson regression model with missing covariates," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(4), pages 457-483, May.
    7. Shen-Ming Lee & Mei-Jih Gee & Shu-Hui Hsieh, 2011. "Semiparametric Methods in the Proportional Odds Model for Ordinal Response Data with Missing Covariates," Biometrics, The International Biometric Society, vol. 67(3), pages 788-798, September.
    8. Hsieh, Shu-Hui & Li, Chin-Shang & Lee, Shen-Ming, 2013. "Logistic regression with outcome and covariates missing separately or simultaneously," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 32-54.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Truong-Nhat Le & Shen-Ming Lee & Phuoc-Loc Tran & Chin-Shang Li, 2023. "Randomized Response Techniques: A Systematic Review from the Pioneering Work of Warner (1965) to the Present," Mathematics, MDPI, vol. 11(7), pages 1-26, April.
    2. Phuoc-Loc Tran & Shen-Ming Lee & Truong-Nhat Le & Chin-Shang Li, 2025. "Large-sample properties of multiple imputation estimators for parameters of logistic regression with covariates missing at random separately or simultaneously," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 77(2), pages 251-287, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Phuoc-Loc Tran & Shen-Ming Lee & Truong-Nhat Le & Chin-Shang Li, 2025. "Large-sample properties of multiple imputation estimators for parameters of logistic regression with covariates missing at random separately or simultaneously," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 77(2), pages 251-287, April.
    2. Buu-Chau Truong & Nguyen Van Thuan & Nguyen Huu Hau & Michael McAleer, 2019. "Applications of the Newton-Raphson Method in Decision Sciences and Education," Advances in Decision Sciences, Asia University, Taiwan, vol. 23(4), pages 52-80, December.
    3. Kim-Hung Pho & Tuan-Kiet Tran & Thi Diem-Chinh Ho & Wing-Keung Wong, 2019. "Optimal Solution Techniques in Decision Sciences A Review," Advances in Decision Sciences, Asia University, Taiwan, vol. 23(1), pages 114-161, March.
    4. Shen-Ming Lee & T. Martin Lukusa & Chin-Shang Li, 2020. "Estimation of a zero-inflated Poisson regression model with missing covariates via nonparametric multiple imputation methods," Computational Statistics, Springer, vol. 35(2), pages 725-754, June.
    5. Kim-Hung Pho & Michael McAleer, 2021. "Specification and Estimation of a Logistic Function, with Applications in the Sciences and Social Sciences," Advances in Decision Sciences, Asia University, Taiwan, vol. 25(2), pages 74-104, June.
    6. Shu-Hui Hsieh & Shen-Ming Lee & Chin-Shang Li & Su-Hao Tu, 2016. "An alternative to unrelated randomized response techniques with logistic regression analysis," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(4), pages 601-621, November.
    7. Eric Han & Majid Mojirsheibani, 2021. "On histogram-based regression and classification with incomplete data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(5), pages 635-662, July.
    8. Noémi Kreif & Richard Grieve & Iván Díaz & David Harrison, 2015. "Evaluation of the Effect of a Continuous Treatment: A Machine Learning Approach with an Application to Treatment for Traumatic Brain Injury," Health Economics, John Wiley & Sons, Ltd., vol. 24(9), pages 1213-1228, September.
    9. Gerko Vink & Stef van Buuren, 2013. "Multiple Imputation of Squared Terms," Sociological Methods & Research, , vol. 42(4), pages 598-607, November.
    10. David Kaplan & Jianshen Chen, 2012. "A Two-Step Bayesian Approach for Propensity Score Analysis: Simulations and Case Study," Psychometrika, Springer;The Psychometric Society, vol. 77(3), pages 581-609, July.
    11. Abhilash Bandam & Eedris Busari & Chloi Syranidou & Jochen Linssen & Detlef Stolten, 2022. "Classification of Building Types in Germany: A Data-Driven Modeling Approach," Data, MDPI, vol. 7(4), pages 1-23, April.
    12. Boonstra Philip S. & Little Roderick J.A. & West Brady T. & Andridge Rebecca R. & Alvarado-Leiton Fernanda, 2021. "A Simulation Study of Diagnostics for Selection Bias," Journal of Official Statistics, Sciendo, vol. 37(3), pages 751-769, September.
    13. Lin Lin & Rachel L Spreng & Kelly E Seaton & S Moses Dennison & Lindsay C Dahora & Daniel J Schuster & Sheetal Sawant & Peter B Gilbert & Youyi Fong & Neville Kisalu & Andrew J Pollard & Georgia D Tom, 2024. "GeM-LR: Discovering predictive biomarkers for small datasets in vaccine studies," PLOS Computational Biology, Public Library of Science, vol. 20(11), pages 1-23, November.
    14. Aleix Alcacer & Irene Epifanio & Jorge Valero & Alfredo Ballester, 2021. "Combining Classification and User-Based Collaborative Filtering for Matching Footwear Size," Mathematics, MDPI, vol. 9(7), pages 1-15, April.
    15. Huang Lin & Merete Eggesbø & Shyamal Das Peddada, 2022. "Linear and nonlinear correlation estimators unveil undescribed taxa interactions in microbiome data," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    16. Renate S M Buisman & Katharina Pittner & Marieke S Tollenaar & Jolanda Lindenberg & Lisa J M van den Berg & Laura H C G Compier-de Block & Joost R van Ginkel & Lenneke R A Alink & Marian J Bakermans-K, 2020. "Intergenerational transmission of child maltreatment using a multi-informant multi-generation family design," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-23, March.
    17. Brian Nolan & Juan C. Palomino & Philippe Van Kerm & Salvatore Morelli, 2022. "Intergenerational wealth transfers in Great Britain from the Wealth and Assets Survey in comparative perspective," Fiscal Studies, John Wiley & Sons, vol. 43(2), pages 179-199, June.
    18. Jie Li & Helin Fu & Kaixun Hu & Wei Chen, 2023. "Data Preprocessing and Machine Learning Modeling for Rockburst Assessment," Sustainability, MDPI, vol. 15(18), pages 1-32, September.
    19. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    20. Liangyuan Hu & Lihua Li, 2022. "Using Tree-Based Machine Learning for Health Studies: Literature Review and Case Series," IJERPH, MDPI, vol. 19(23), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:38:y:2023:i:2:d:10.1007_s00180-022-01250-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.