Fixed-rank matrix factorizations and Riemannian low-rank optimization
Author
Abstract
Suggested Citation
DOI: 10.1007/s00180-013-0464-z
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ming Yuan & Ali Ekici & Zhaosong Lu & Renato Monteiro, 2007. "Dimension reduction and coefficient estimation in multivariate linear regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(3), pages 329-346, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Nickolay Trendafilov & Martin Kleinsteuber & Hui Zou, 2014. "Sparse matrices in data analysis," Computational Statistics, Springer, vol. 29(3), pages 403-405, June.
- Marie Billaud-Friess & Antonio Falcó & Anthony Nouy, 2021. "Principal Bundle Structure of Matrix Manifolds," Mathematics, MDPI, vol. 9(14), pages 1-17, July.
- Ke Wang & Zhuo Chen & Shihui Ying & Xinjian Xu, 2023. "Low-Rank Matrix Completion via QR-Based Retraction on Manifolds," Mathematics, MDPI, vol. 11(5), pages 1-17, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Donghwi Nam & Ja-Yong Koo & Kwan-Young Bak, 2025. "Dimensionality reduction in multivariate nonparametric regression via nuclear norm penalization," Statistical Papers, Springer, vol. 66(3), pages 1-33, April.
- Lee, Wonyul & Liu, Yufeng, 2012. "Simultaneous multiple response regression and inverse covariance matrix estimation via penalized Gaussian maximum likelihood," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 241-255.
- Chen, Canyi & Xu, Wangli & Zhu, Liping, 2022. "Distributed estimation in heterogeneous reduced rank regression: With application to order determination in sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
- Matsui, Hidetoshi, 2014. "Variable and boundary selection for functional data via multiclass logistic regression modeling," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 176-185.
- Zehua Chen & Yiwei Jiang, 2020. "A two-stage sequential conditional selection approach to sparse high-dimensional multivariate regression models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(1), pages 65-90, February.
- Luo, Chongliang & Liang, Jian & Li, Gen & Wang, Fei & Zhang, Changshui & Dey, Dipak K. & Chen, Kun, 2018. "Leveraging mixed and incomplete outcomes via reduced-rank modeling," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 378-394.
- An, Baiguo & Zhang, Beibei, 2017. "Simultaneous selection of predictors and responses for high dimensional multivariate linear regression," Statistics & Probability Letters, Elsevier, vol. 127(C), pages 173-177.
- Miyashiro, Ryuhei & Takano, Yuichi, 2015. "Mixed integer second-order cone programming formulations for variable selection in linear regression," European Journal of Operational Research, Elsevier, vol. 247(3), pages 721-731.
- Fujikoshi, Yasunori & Sakurai, Tetsuro, 2016. "High-dimensional consistency of rank estimation criteria in multivariate linear model," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 199-212.
- repec:hum:wpaper:sfb649dp2016-018 is not listed on IDEAS
- Changliang Zou & Xianghui Ning & Fugee Tsung, 2012. "LASSO-based multivariate linear profile monitoring," Annals of Operations Research, Springer, vol. 192(1), pages 3-19, January.
- Yiting Ma & Pan Shang & Lingchen Kong, 2025. "Tuning parameter selection for the adaptive nuclear norm regularized trace regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 77(3), pages 491-516, June.
- Chao, Shih-Kang & Härdle, Wolfgang K. & Huang, Chen, 2018. "Multivariate factorizable expectile regression with application to fMRI data," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 1-19.
- Mishra, Aditya & Dey, Dipak K. & Chen, Yong & Chen, Kun, 2021. "Generalized co-sparse factor regression," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
- Marie Levakova & Susanne Ditlevsen, 2024. "Penalisation Methods in Fitting High‐Dimensional Cointegrated Vector Autoregressive Models: A Review," International Statistical Review, International Statistical Institute, vol. 92(2), pages 160-193, August.
- Pan Shang & Lingchen Kong, 2021. "Regularization Parameter Selection for the Low Rank Matrix Recovery," Journal of Optimization Theory and Applications, Springer, vol. 189(3), pages 772-792, June.
- Qiu, Yue & Zheng, Yuchen, 2023. "Improving box office projections through sentiment analysis: Insights from regularization-based forecast combinations," Economic Modelling, Elsevier, vol. 125(C).
- Li, Mei & Kong, Lingchen, 2019. "Double fused Lasso penalized LAD for matrix regression," Applied Mathematics and Computation, Elsevier, vol. 357(C), pages 119-138.
- Vladimir M. Cvetković & Neda Nikolić & Adem Ocal & Jovana Martinović & Aleksandar Dragašević, 2022. "A Predictive Model of Pandemic Disaster Fear Caused by Coronavirus (COVID-19): Implications for Decision-Makers," IJERPH, MDPI, vol. 19(2), pages 1-27, January.
- Jin Liu & Jian Huang & Shuangge Ma, 2012. "Analysis of Genome-Wide Association Studies with Multiple Outcomes Using Penalization," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-12, December.
- Goh, Gyuhyeong & Dey, Dipak K. & Chen, Kun, 2017. "Bayesian sparse reduced rank multivariate regression," Journal of Multivariate Analysis, Elsevier, vol. 157(C), pages 14-28.
More about this item
Keywords
Riemannian quotient geometry; Riemannian trust-region ; Steepest descent; Low-rank matrix completion; Linear regression;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:29:y:2014:i:3:p:591-621. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.