IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v28y2013i4p1617-1637.html
   My bibliography  Save this article

On robust cross-validation for nonparametric smoothing

Author

Listed:
  • Oliver Morell

    ()

  • Dennis Otto
  • Roland Fried

Abstract

An essential problem in nonparametric smoothing of noisy data is a proper choice of the bandwidth or window width, which depends on a smoothing parameter $$k$$ . One way to choose $$k$$ based on the data is leave-one-out-cross-validation. The selection of the cross-validation criterion is similarly important as the choice of the smoother. Especially, when outliers are present, robust cross-validation criteria are needed. So far little is known about the behaviour of robust cross-validated smoothers in the presence of discontinuities in the regression function. We combine different smoothing procedures based on local constant fits with each of several cross-validation criteria. These combinations are compared in a simulation study under a broad variety of data situations with outliers and abrupt jumps. There is not a single overall best cross-validation criterion, but we find Boente-cross-validation to perform well in case of large percentages of outliers and the Tukey-criterion in case of data situations with jumps, even if the data are contaminated with outliers. Copyright Springer-Verlag Berlin Heidelberg 2013

Suggested Citation

  • Oliver Morell & Dennis Otto & Roland Fried, 2013. "On robust cross-validation for nonparametric smoothing," Computational Statistics, Springer, vol. 28(4), pages 1617-1637, August.
  • Handle: RePEc:spr:compst:v:28:y:2013:i:4:p:1617-1637
    DOI: 10.1007/s00180-012-0369-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00180-012-0369-2
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ursula Gather & Karen Schettlinger & Roland Fried, 2006. "Online signal extraction by robust linear regression," Computational Statistics, Springer, vol. 21(1), pages 33-51, March.
    2. K. Benhenni & F. Ferraty & M. Rachdi & P. Vieu, 2007. "Local smoothing regression with functional data," Computational Statistics, Springer, vol. 22(3), pages 353-369, September.
    3. Paul Fearnhead & Peter Clifford, 2003. "On-line inference for hidden Markov models via particle filters," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(4), pages 887-899.
    4. Lee, Jong Soo & Cox, Dennis D., 2010. "Robust smoothing: Smoothing parameter selection and applications to fluorescence spectroscopy," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3131-3143, December.
    5. Zhang, Xibin & Brooks, Robert D. & King, Maxwell L., 2009. "A Bayesian approach to bandwidth selection for multivariate kernel regression with an application to state-price density estimation," Journal of Econometrics, Elsevier, vol. 153(1), pages 21-32, November.
    6. Fried, Roland & Bernholt, Thorsten & Gather, Ursula, 2006. "Repeated median and hybrid filters," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2313-2338, May.
    7. Boente, Graciela & Rodriguez, Daniela, 2008. "Robust bandwidth selection in semiparametric partly linear regression models: Monte Carlo study and influential analysis," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2808-2828, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Claudia Köllmann & Björn Bornkamp & Katja Ickstadt, 2014. "Unimodal regression using Bernstein–Schoenberg splines and penalties," Biometrics, The International Biometric Society, vol. 70(4), pages 783-793, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:28:y:2013:i:4:p:1617-1637. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.