IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v163y2020i3d10.1007_s10584-020-02927-8.html
   My bibliography  Save this article

How evaluation of hydrological models influences results of climate impact assessment—an editorial

Author

Listed:
  • Valentina Krysanova

    (Potsdam Institute for Climate Impact Research)

  • Fred F. Hattermann

    (Potsdam Institute for Climate Impact Research)

  • Zbigniew W. Kundzewicz

    (Potsdam Institute for Climate Impact Research
    Institute of Agricultural and Forest Environment of the Polish Academy of Sciences)

Abstract

This paper introduces the Special Issue (SI) “How evaluation of hydrological models influences results of climate impact assessment.” The main objectives were as follows: (a) to test a comprehensive model calibration/validation procedure, consisting of five steps, for regional-scale hydrological models; (b) to evaluate performance of global-scale hydrological models; and (c) to reveal whether the calibration/validation methods and the model evaluation results influence climate impacts in terms of the magnitude of the change signal and the uncertainty range. Here, we shortly describe the river basins and large regions used as case studies; the hydrological models, data, and climate scenarios used in the studies; and the applied approaches for model evaluation and for analysis of projections for the future. After that, we summarize the main findings. The following general conclusions could be drawn. After successful comprehensive calibration and validation, the regional-scale models are more robust and their projections for the future differ from those of the model versions after the conventional calibration and validation. Therefore, climate impacts based on the former models are more trustworthy than those simulated by the latter models. Regarding the global-scale models, using only models with satisfactory or good performance on historical data and weighting them based on model evaluation results is a more reliable approach for impact assessment compared to the ensemble mean approach that is commonly used. The former method provides impact results with higher credibility and reduced spreads in comparison to the latter approach. The studies for this SI were performed in the framework of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP).

Suggested Citation

  • Valentina Krysanova & Fred F. Hattermann & Zbigniew W. Kundzewicz, 2020. "How evaluation of hydrological models influences results of climate impact assessment—an editorial," Climatic Change, Springer, vol. 163(3), pages 1121-1141, December.
  • Handle: RePEc:spr:climat:v:163:y:2020:i:3:d:10.1007_s10584-020-02927-8
    DOI: 10.1007/s10584-020-02927-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-020-02927-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-020-02927-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Philippe Roudier & Jafet C. M. Andersson & Chantal Donnelly & Luc Feyen & Wouter Greuell & Fulco Ludwig, 2016. "Projections of future floods and hydrological droughts in Europe under a +2°C global warming," Climatic Change, Springer, vol. 135(2), pages 341-355, March.
    2. F. F. Hattermann & V. Krysanova & S. N. Gosling & R. Dankers & P. Daggupati & C. Donnelly & M. Flörke & S. Huang & Y. Motovilov & S. Buda & T. Yang & C. Müller & G. Leng & Q. Tang & F. T. Portmann & S, 2017. "Cross‐scale intercomparison of climate change impacts simulated by regional and global hydrological models in eleven large river basins," Climatic Change, Springer, vol. 141(3), pages 561-576, April.
    3. Valentina Krysanova & Fred F. Hattermann, 2017. "Intercomparison of climate change impacts in 12 large river basins: overview of methods and summary of results," Climatic Change, Springer, vol. 141(3), pages 363-379, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pengcheng Qin & Hongmei Xu & Min Liu & Lüliu Liu & Chan Xiao & Iman Mallakpour & Matin Rahnamay Naeini & Kuolin Hsu & Soroosh Sorooshian, 2022. "Projected impacts of climate change on major dams in the Upper Yangtze River Basin," Climatic Change, Springer, vol. 170(1), pages 1-24, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valentina Krysanova & Jamal Zaherpour & Iulii Didovets & Simon N. Gosling & Dieter Gerten & Naota Hanasaki & Hannes Müller Schmied & Yadu Pokhrel & Yusuke Satoh & Qiuhong Tang & Yoshihide Wada, 2020. "How evaluation of global hydrological models can help to improve credibility of river discharge projections under climate change," Climatic Change, Springer, vol. 163(3), pages 1353-1377, December.
    2. Shanshan Wen & Buda Su & Yanjun Wang & Jianqing Zhai & Hemin Sun & Ziyan Chen & Jinlong Huang & Anqian Wang & Tong Jiang, 2020. "Comprehensive evaluation of hydrological models for climate change impact assessment in the Upper Yangtze River Basin, China," Climatic Change, Springer, vol. 163(3), pages 1207-1226, December.
    3. Shaochun Huang & Harsh Shah & Bibi S. Naz & Narayan Shrestha & Vimal Mishra & Prasad Daggupati & Uttam Ghimire & Tobias Vetter, 2020. "Impacts of hydrological model calibration on projected hydrological changes under climate change—a multi-model assessment in three large river basins," Climatic Change, Springer, vol. 163(3), pages 1143-1164, December.
    4. Alison Kay, 2022. "Differences in hydrological impacts using regional climate model and nested convection-permitting model data," Climatic Change, Springer, vol. 173(1), pages 1-19, July.
    5. Muhammad Fraz Ismail & Bibi S. Naz & Michel Wortmann & Markus Disse & Laura C. Bowling & Wolfgang Bogacki, 2020. "Comparison of two model calibration approaches and their influence on future projections under climate change in the Upper Indus Basin," Climatic Change, Springer, vol. 163(3), pages 1227-1246, December.
    6. Joanna Nowak Da Costa & Beata Calka & Elzbieta Bielecka, 2021. "Urban Population Flood Impact Applied to a Warsaw Scenario," Resources, MDPI, vol. 10(6), pages 1-17, June.
    7. João Paulo Lyra Fialho Brêda & Rodrigo Cauduro Dias Paiva & Walter Collischon & Juan Martín Bravo & Vinicius Alencar Siqueira & Elisa Bolzan Steinke, 2020. "Climate change impacts on South American water balance from a continental-scale hydrological model driven by CMIP5 projections," Climatic Change, Springer, vol. 159(4), pages 503-522, April.
    8. Ioannis Kougkoulos & Myriam Merad & Simon J. Cook & Ioannis Andredakis, 2021. "Floods in Provence-Alpes-Côte d'Azur and lessons for French flood risk governance," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(2), pages 1959-1980, November.
    9. Thibault Lemaitre-Basset & Ludovic Oudin & Guillaume Thirel, 2022. "Evapotranspiration in hydrological models under rising CO2: a jump into the unknown," Climatic Change, Springer, vol. 172(3), pages 1-19, June.
    10. E. Soriano & L. Mediero & C. Garijo, 2020. "Quantification of Expected Changes in Peak Flow Quantiles in Climate Change by Combining Continuous Hydrological Modelling with the Modified Curve Number Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(14), pages 4381-4397, November.
    11. A. L. Kay & V. A. Bell & B. P. Guillod & R. G. Jones & A. C. Rudd, 2018. "National-scale analysis of low flow frequency: historical trends and potential future changes," Climatic Change, Springer, vol. 147(3), pages 585-599, April.
    12. Edwar Forero-Ortiz & Eduardo Martínez-Gomariz & Robert Monjo, 2020. "Climate Change Implications for Water Availability: A Case Study of Barcelona City," Sustainability, MDPI, vol. 12(5), pages 1-15, February.
    13. Alison C. Rudd & A. L. Kay & V. A. Bell, 2019. "National-scale analysis of future river flow and soil moisture droughts: potential changes in drought characteristics," Climatic Change, Springer, vol. 156(3), pages 323-340, October.
    14. Chantal Donnelly & Wouter Greuell & Jafet Andersson & Dieter Gerten & Giovanna Pisacane & Philippe Roudier & Fulco Ludwig, 2017. "Impacts of climate change on European hydrology at 1.5, 2 and 3 degrees mean global warming above preindustrial level," Climatic Change, Springer, vol. 143(1), pages 13-26, July.
    15. Nina Knittel & Martin W. Jury & Birgit Bednar-Friedl & Gabriel Bachner & Andrea K. Steiner, 2020. "A global analysis of heat-related labour productivity losses under climate change—implications for Germany’s foreign trade," Climatic Change, Springer, vol. 160(2), pages 251-269, May.
    16. Anne Gädeke & Valentina Krysanova & Aashutosh Aryal & Jinfeng Chang & Manolis Grillakis & Naota Hanasaki & Aristeidis Koutroulis & Yadu Pokhrel & Yusuke Satoh & Sibyll Schaphoff & Hannes Müller Schmie, 2020. "Performance evaluation of global hydrological models in six large Pan-Arctic watersheds," Climatic Change, Springer, vol. 163(3), pages 1329-1351, December.
    17. Quoc Bao Pham & Sk Ajim Ali & Elzbieta Bielecka & Beata Calka & Agata Orych & Farhana Parvin & Ewa Łupikasza, 2022. "Flood vulnerability and buildings’ flood exposure assessment in a densely urbanised city: comparative analysis of three scenarios using a neural network approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(2), pages 1043-1081, September.
    18. Rutger Dankers & Zbigniew W. Kundzewicz, 2020. "Grappling with uncertainties in physical climate impact projections of water resources," Climatic Change, Springer, vol. 163(3), pages 1379-1397, December.
    19. Noora Veijalainen & Lauri Ahopelto & Mika Marttunen & Jaakko Jääskeläinen & Ritva Britschgi & Mirjam Orvomaa & Antti Belinskij & Marko Keskinen, 2019. "Severe Drought in Finland: Modeling Effects on Water Resources and Assessing Climate Change Impacts," Sustainability, MDPI, vol. 11(8), pages 1-26, April.
    20. Jan Gaska, 2023. "Losses from Fluvial Floods in Poland over the 21st Century – Estimation Using the Productivity Costs Method," Economics of Disasters and Climate Change, Springer, vol. 7(3), pages 357-383, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:163:y:2020:i:3:d:10.1007_s10584-020-02927-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.