IDEAS home Printed from https://ideas.repec.org/a/spr/cejnor/v19y2011i4p605-613.html
   My bibliography  Save this article

A concept of a robust solution of a multicriterial linear programming problem

Author

Listed:
  • Dorota Kuchta

Abstract

A new concept of a robust solution of a multicriterial linear programming problem is proposed. The robust solution is understood here as the best starting point, prepared while the preferences of the decision maker with respect to the criteria are still unknown, for the adaptation of the solution to the preferences of the decision maker, once they are finally known. The objective is the total cost of the initial preparation and of the later potential adaptation of the solution. In the starting robust solution the decision variables may have interval values. The problem can be solved by means of the simplex algorithm. A numerical example illustrates the approach. Copyright The Author(s) 2011

Suggested Citation

  • Dorota Kuchta, 2011. "A concept of a robust solution of a multicriterial linear programming problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 19(4), pages 605-613, December.
  • Handle: RePEc:spr:cejnor:v:19:y:2011:i:4:p:605-613
    DOI: 10.1007/s10100-010-0150-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10100-010-0150-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10100-010-0150-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El-Banna, Abou-Zaid H. & Zarea, Sana’a A., 2001. "Stability of linear vector optimization problems corresponding to an efficient set," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 57(6), pages 335-345.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jerzy Grobelny & Rafał Michalski, 2020. "Effects of scatter plot initial solutions on regular grid facility layout algorithms in typical production models," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(2), pages 601-632, June.
    2. P. Kumar & A. K. Bhurjee, 2022. "Multi-objective enhanced interval optimization problem," Annals of Operations Research, Springer, vol. 311(2), pages 1035-1050, April.
    3. Antonio G. Martín & Manuel Díaz-Madroñero & Josefa Mula, 2020. "Master production schedule using robust optimization approaches in an automobile second-tier supplier," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 143-166, March.
    4. Hanks, Robert W. & Lunday, Brian J. & Weir, Jeffery D., 2020. "Robust goal programming for multi-objective optimization of data-driven problems: A use case for the United States transportation command's liner rate setting problem," Omega, Elsevier, vol. 90(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      Keywords

      Multicriteria programming; Robust solution;

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:cejnor:v:19:y:2011:i:4:p:605-613. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.