IDEAS home Printed from https://ideas.repec.org/a/spr/aqjoor/v21y2023i3d10.1007_s10288-022-00523-3.html
   My bibliography  Save this article

Approximating the chance-constrained capacitated vehicle routing problem with robust optimization

Author

Listed:
  • Karina Thiebaut

    (Universidade Federal Fluminense)

  • Artur Pessoa

    (Universidade Federal Fluminense)

Abstract

The Capacitated Vehicle Routing Problem (CVRP) is a classical combinatorial optimization problem that aims to serve a set of customers, using a set of identical vehicles, satisfying the vehicle capacities, and minimizing the total traveling distance. Among the possible approaches to extend the CVRP for handling uncertain demands, we highlight the robust optimization with budgeted uncertainty, and chance-constrained optimization. Another simpler and often omitted option is to apply the deterministic CVRP model over augmented demands in such a way to reduce the capacity violation probability. In this paper, we propose a suitable way to adjust the input data of both the deterministic CVRP and the robust CVRP with budgeted uncertainty so that the corresponding output approximates the chance-constrained CVRP for the case of independently normally distributed demands. In order to test our approach, we present quite extensive experiments showing that it leads to very small deviations with respect to the optimal chance-constrained solutions, and that the robust model brings significant benefits with respect to the deterministic one. In order to optimally solve the proposed chance-constrained benchmark instances, we also introduce a new technique to tighten a family of known inequalities for this problem.

Suggested Citation

  • Karina Thiebaut & Artur Pessoa, 2023. "Approximating the chance-constrained capacitated vehicle routing problem with robust optimization," 4OR, Springer, vol. 21(3), pages 513-531, September.
  • Handle: RePEc:spr:aqjoor:v:21:y:2023:i:3:d:10.1007_s10288-022-00523-3
    DOI: 10.1007/s10288-022-00523-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10288-022-00523-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10288-022-00523-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G. Clarke & J. W. Wright, 1964. "Scheduling of Vehicles from a Central Depot to a Number of Delivery Points," Operations Research, INFORMS, vol. 12(4), pages 568-581, August.
    2. G. B. Dantzig & J. H. Ramser, 1959. "The Truck Dispatching Problem," Management Science, INFORMS, vol. 6(1), pages 80-91, October.
    3. Shubhechyya Ghosal & Wolfram Wiesemann, 2020. "The Distributionally Robust Chance-Constrained Vehicle Routing Problem," Operations Research, INFORMS, vol. 68(3), pages 716-732, May.
    4. Artur Alves Pessoa & Michael Poss & Ruslan Sadykov & François Vanderbeck, 2021. "Branch-Cut-and-Price for the Robust Capacitated Vehicle Routing Problem with Knapsack Uncertainty," Operations Research, INFORMS, vol. 69(3), pages 739-754, May.
    5. Gilbert Laporte, 2009. "Fifty Years of Vehicle Routing," Transportation Science, INFORMS, vol. 43(4), pages 408-416, November.
    6. Roberto Baldacci & Paolo Toth & Daniele Vigo, 2010. "Exact algorithms for routing problems under vehicle capacity constraints," Annals of Operations Research, Springer, vol. 175(1), pages 213-245, March.
    7. Laporte, Gilbert & Louveaux, Francois & Mercure, Helene, 1989. "Models and exact solutions for a class of stochastic location-routing problems," European Journal of Operational Research, Elsevier, vol. 39(1), pages 71-78, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koç, Çağrı & Bektaş, Tolga & Jabali, Ola & Laporte, Gilbert, 2016. "Thirty years of heterogeneous vehicle routing," European Journal of Operational Research, Elsevier, vol. 249(1), pages 1-21.
    2. Lai, David S.W. & Caliskan Demirag, Ozgun & Leung, Janny M.Y., 2016. "A tabu search heuristic for the heterogeneous vehicle routing problem on a multigraph," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 86(C), pages 32-52.
    3. Coelho, V.N. & Grasas, A. & Ramalhinho, H. & Coelho, I.M. & Souza, M.J.F. & Cruz, R.C., 2016. "An ILS-based algorithm to solve a large-scale real heterogeneous fleet VRP with multi-trips and docking constraints," European Journal of Operational Research, Elsevier, vol. 250(2), pages 367-376.
    4. Campelo, Pedro & Neves-Moreira, Fábio & Amorim, Pedro & Almada-Lobo, Bernardo, 2019. "Consistent vehicle routing problem with service level agreements: A case study in the pharmaceutical distribution sector," European Journal of Operational Research, Elsevier, vol. 273(1), pages 131-145.
    5. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    6. Minis, I. & Tatarakis, A., 2011. "Stochastic single vehicle routing problem with delivery and pick up and a predefined customer sequence," European Journal of Operational Research, Elsevier, vol. 213(1), pages 37-51, August.
    7. Shengbin Wang & Weizhen Rao & Yuan Hong, 2020. "A distance matrix based algorithm for solving the traveling salesman problem," Operational Research, Springer, vol. 20(3), pages 1505-1542, September.
    8. Puca Huachi Vaz Penna & Anand Subramanian & Luiz Satoru Ochi & Thibaut Vidal & Christian Prins, 2019. "A hybrid heuristic for a broad class of vehicle routing problems with heterogeneous fleet," Annals of Operations Research, Springer, vol. 273(1), pages 5-74, February.
    9. Hideki Hashimoto & Mutsunori Yagiura & Shinji Imahori & Toshihide Ibaraki, 2013. "Recent progress of local search in handling the time window constraints of the vehicle routing problem," Annals of Operations Research, Springer, vol. 204(1), pages 171-187, April.
    10. Lagos, Felipe & Pereira, Jordi, 2024. "Multi-armed bandit-based hyper-heuristics for combinatorial optimization problems," European Journal of Operational Research, Elsevier, vol. 312(1), pages 70-91.
    11. Yufu Ning & Taoyong Su, 2017. "A multilevel approach for modelling vehicle routing problem with uncertain travelling time," Journal of Intelligent Manufacturing, Springer, vol. 28(3), pages 683-688, March.
    12. Phan Nguyen Ky Phuc & Nguyen Le Phuong Thao, 2021. "Ant Colony Optimization for Multiple Pickup and Multiple Delivery Vehicle Routing Problem with Time Window and Heterogeneous Fleets," Logistics, MDPI, vol. 5(2), pages 1-13, May.
    13. Tatarakis, A. & Minis, I., 2009. "Stochastic single vehicle routing with a predefined customer sequence and multiple depot returns," European Journal of Operational Research, Elsevier, vol. 197(2), pages 557-571, September.
    14. Panagiotis Kalatzantonakis & Angelo Sifaleras & Nikolaos Samaras, 2020. "Cooperative versus non-cooperative parallel variable neighborhood search strategies: a case study on the capacitated vehicle routing problem," Journal of Global Optimization, Springer, vol. 78(2), pages 327-348, October.
    15. Brandstätter, Christian & Reimann, Marc, 2018. "The Line-haul Feeder Vehicle Routing Problem: Mathematical model formulation and heuristic approaches," European Journal of Operational Research, Elsevier, vol. 270(1), pages 157-170.
    16. Abdulkader, M.M.S. & Gajpal, Yuvraj & ElMekkawy, Tarek Y., 2018. "Vehicle routing problem in omni-channel retailing distribution systems," International Journal of Production Economics, Elsevier, vol. 196(C), pages 43-55.
    17. Chiang, Wen-Chyuan & Li, Yuyu & Shang, Jennifer & Urban, Timothy L., 2019. "Impact of drone delivery on sustainability and cost: Realizing the UAV potential through vehicle routing optimization," Applied Energy, Elsevier, vol. 242(C), pages 1164-1175.
    18. Liu, Ran & Jiang, Zhibin, 2012. "The close–open mixed vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 220(2), pages 349-360.
    19. Zhen, Lu & Baldacci, Roberto & Tan, Zheyi & Wang, Shuaian & Lyu, Junyan, 2022. "Scheduling heterogeneous delivery tasks on a mixed logistics platform," European Journal of Operational Research, Elsevier, vol. 298(2), pages 680-698.
    20. Jumbo, Olga & Moghaddass, Ramin, 2022. "Resource optimization and image processing for vegetation management programs in power distribution networks," Applied Energy, Elsevier, vol. 319(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aqjoor:v:21:y:2023:i:3:d:10.1007_s10288-022-00523-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.