IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v11y2024i3d10.1007_s40745-022-00448-y.html
   My bibliography  Save this article

Assessment of Two Process Capabilities by Using Generalized Confidence Intervals and its Applications

Author

Listed:
  • Mahendra Saha

    (Central University of Rajasthan)

Abstract

In this article, we use Monte Carlo simulation study to calculate the generalized confidence interval of the difference between two recently proposed process capacity indices ( $$\mathcal S^{\prime }_{pk1}-{\mathcal {S}}^{\prime }_{pk2}$$ S p k 1 ′ - S p k 2 ′ ) when the underlying process follows a normal process distribution. Method of moment estimate is used to estimate the parameters of the process distribution. The proposed generalized confidence interval can be effectively employed to determine which one of the two processes or manufacturer’s (or supplier’s) has a better process capability. Also Monte Carlo simulation has been used to investigate the estimated coverage probabilities and average widths of the generalized confidence intervals of ( $${\mathcal {S}}^{\prime }_{pk1}-\mathcal S^{\prime }_{pk2}$$ S p k 1 ′ - S p k 2 ′ ). The findings of the simulation demonstrated that as sample size rises, the mean squared errors decrease. To illustrate the generalized confidence intervals of the difference between two process capacity indices for improved supplier selection, three real data sets linked to the electronic industries are investigated.

Suggested Citation

  • Mahendra Saha, 2024. "Assessment of Two Process Capabilities by Using Generalized Confidence Intervals and its Applications," Annals of Data Science, Springer, vol. 11(3), pages 931-945, June.
  • Handle: RePEc:spr:aodasc:v:11:y:2024:i:3:d:10.1007_s40745-022-00448-y
    DOI: 10.1007/s40745-022-00448-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-022-00448-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-022-00448-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohiuddin Ahmed & A. K. M. Najmul Islam, 2020. "Deep Learning: Hope or Hype," Annals of Data Science, Springer, vol. 7(3), pages 427-432, September.
    2. Wei-Hwa Wu & Hsin-Neng Hsieh, 2014. "Generalized confidence interval estimation for the mean of delta-lognormal distribution: an application to New Zealand trawl survey data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(7), pages 1471-1485, July.
    3. V�ctor Leiva & Carolina Marchant & Helton Saulo & Muhammad Aslam & Fernando Rojas, 2014. "Capability indices for Birnbaum-Saunders processes applied to electronic and food industries," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(9), pages 1881-1902, September.
    4. Bi-Min Hsu & Chien-Wei Wu & Ming-Hung Shu, 2008. "Generalized confidence intervals for the process capability index C pm," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 68(1), pages 65-82, June.
    5. Qi Wang & Yue Ma & Kun Zhao & Yingjie Tian, 2022. "A Comprehensive Survey of Loss Functions in Machine Learning," Annals of Data Science, Springer, vol. 9(2), pages 187-212, April.
    6. Hossein Hassani & Xu Huang & Emmanuel Silva & Mansi Ghodsi, 2020. "Deep Learning and Implementations in Banking," Annals of Data Science, Springer, vol. 7(3), pages 433-446, September.
    7. Neha Choudhary & Abhishek Tyagi & Bhupendra Singh, 2022. "Analysing Load-Sharing System Model with Type-I and Type-II Failure Censored Data from Weibull Distribution," Annals of Data Science, Springer, vol. 9(4), pages 645-674, August.
    8. Mahendra Saha & Sanku Dey & Sudhansu S. Maiti, 2019. "Bootstrap confidence intervals of CpTk for two parameter logistic exponential distribution with applications," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(4), pages 623-631, August.
    9. James M. Tien, 2017. "Internet of Things, Real-Time Decision Making, and Artificial Intelligence," Annals of Data Science, Springer, vol. 4(2), pages 149-178, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sanku Dey & Mahendra Saha & M. Z. Anis & Sudhansu S. Maiti & Sumit Kumar, 2023. "Estimation and confidence intervals of $$C_{Np}(u,v)$$ C Np ( u , v ) for logistic-exponential distribution with application," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 431-446, March.
    2. Astha Modi & Khelan Shah & Shrey Shah & Samir Patel & Manan Shah, 2024. "Sentiment Analysis of Twitter Feeds Using Flask Environment: A Superior Application of Data Analysis," Annals of Data Science, Springer, vol. 11(1), pages 159-180, February.
    3. Rijwan Khan, 2023. "Deep Learning System and It’s Automatic Testing: An Approach," Annals of Data Science, Springer, vol. 10(4), pages 1019-1033, August.
    4. Paula Ianishi & Oilson Alberto Gonzatto Junior & Marcos Jardel Henriques & Diego Carvalho do Nascimento & Gabriel Kamada Mattar & Pedro Luiz Ramos & Anderson Ara & Francisco Louzada, 2022. "Probability on Graphical Structure: A Knowledge-Based Agricultural Case," Annals of Data Science, Springer, vol. 9(2), pages 327-345, April.
    5. Preeti Verma & Sunil Patil, 2023. "A Machine Learning Approach and Methodology for Solar Radiation Assessment Using Multispectral Satellite Images," Annals of Data Science, Springer, vol. 10(4), pages 907-932, August.
    6. Sanku Dey & Liang Wang & Mahendra Saha, 2024. "Inference of $$S^{\prime }_{pmk}$$ S pmk ′ based on bias-corrected methods of estimation for generalized exponential distribution," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(11), pages 5265-5278, November.
    7. Ayesha Sohail, 2024. "“Transfer Learning” for Bridging the Gap Between Data Sciences and the Deep Learning," Annals of Data Science, Springer, vol. 11(1), pages 337-345, February.
    8. Ashish Kumar & Muskaan Arora & Monika Saini, 2023. "Influence of mathematics on the academic performance of mechanical engineering students: a PLS-SEM approach," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 367-376, February.
    9. Heba Soltan Mohamed & M. Masoom Ali & Haitham M. Yousof, 2023. "The Lindley Gompertz Model for Estimating the Survival Rates: Properties and Applications in Insurance," Annals of Data Science, Springer, vol. 10(5), pages 1199-1216, October.
    10. Roberto Moro-Visconti & Salvador Cruz Rambaud & Joaquín López Pascual, 2023. "Artificial intelligence-driven scalability and its impact on the sustainability and valuation of traditional firms," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-14, December.
    11. Mansoureh Beheshti Nejad & Seyed Mahmoud Zanjirchi & Seyed Mojtaba Hosseini Bamakan & Negar Jalilian, 2024. "Blockchain Adoption in Operations Management: A Systematic Literature Review of 14 Years of Research," Annals of Data Science, Springer, vol. 11(4), pages 1361-1389, August.
    12. M. Sridharan, 2023. "Generalized Regression Neural Network Model Based Estimation of Global Solar Energy Using Meteorological Parameters," Annals of Data Science, Springer, vol. 10(4), pages 1107-1125, August.
    13. Satti R. G. Reddy & G. P. Saradhi Varma & Rajya Lakshmi Davuluri, 2024. "Deep Neural Network (DNN) Mechanism for Identification of Diseased and Healthy Plant Leaf Images Using Computer Vision," Annals of Data Science, Springer, vol. 11(1), pages 243-272, February.
    14. Amaal Elsayed Mubarak & Ehab Mohamed Almetwally, 2024. "Modelling and Forecasting of Covid-19 Using Periodical ARIMA Models," Annals of Data Science, Springer, vol. 11(4), pages 1483-1502, August.
    15. Xueyan Xu & Fusheng Yu & Runjun Wan, 2023. "A Determining Degree-Based Method for Classification Problems with Interval-Valued Attributes," Annals of Data Science, Springer, vol. 10(2), pages 393-413, April.
    16. Qinghua Zheng & Chutong Yang & Haijun Yang & Jianhe Zhou, 2020. "A Fast Exact Algorithm for Deployment of Sensor Nodes for Internet of Things," Information Systems Frontiers, Springer, vol. 22(4), pages 829-842, August.
    17. Prashant Singh & Prashant Verma & Nikhil Singh, 2022. "Offline Signature Verification: An Application of GLCM Features in Machine Learning," Annals of Data Science, Springer, vol. 9(6), pages 1309-1321, December.
    18. Shah Hussain & Muhammad Qasim Khan, 2023. "Student-Performulator: Predicting Students’ Academic Performance at Secondary and Intermediate Level Using Machine Learning," Annals of Data Science, Springer, vol. 10(3), pages 637-655, June.
    19. Elham Shamsinejad & Touraj Banirostam & Mir Mohsen Pedram & Amir Masoud Rahmani, 2025. "A Review of Anonymization Algorithms and Methods in Big Data," Annals of Data Science, Springer, vol. 12(1), pages 253-279, February.
    20. A. R. Sherwani & Q. M. Ali, 2023. "Parametric Classification using Fuzzy Approach for Handling the Problem of Mixed Pixels in Ground Truth Data for a Satellite Image," Annals of Data Science, Springer, vol. 10(6), pages 1459-1472, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:11:y:2024:i:3:d:10.1007_s40745-022-00448-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.