IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v12y2025i3d10.1007_s40745-024-00558-9.html
   My bibliography  Save this article

Exploring the Potential of the Kumaraswamy Discrete Half-Logistic Distribution in Data Science Scanning and Decision-Making

Author

Listed:
  • Hend S. Shahen

    (Prince Sattam bin Abdulaziz University
    Mansoura University)

  • Mohamed S. Eliwa

    (Qassim University
    Mansoura University)

  • Mahmoud El-Morshedy

    (Prince Sattam bin Abdulaziz University
    Mansoura University)

Abstract

Data science often employs discrete probability distributions to model and analyze various phenomena. These distributions are particularly useful when dealing with data that can be categorized into distinct outcomes or events. This study presents a discrete random probability model, supported by non-negative integers, formulated from the well-established Kumaraswamy family through a recognized discretization method, preserving the survival function’s functional structure. Various significant statistical properties like hazard rate function, crude moments, index of dispersion, skewness, kurtosis, quantile function, L-moments, and entropies are derived. This new probability mass function allows for the analysis of asymmetric dispersion data across different kurtosis forms, including mesokurtic, platykurtic, and leptokurtic distributions. Furthermore, this model effectively handles excess zeros, under and over dispersion commonly encountered in diverse fields. Additionally, the hazard rate function demonstrates considerable flexibility, encompassing monotonic decreasing, bathtub, monotonously increasing, and bathtub-constant failure rate characteristics. Following the theoretical introduction of this new discrete model, model parameters are estimated through maximum likelihood estimation, with a subsequent discussion on the performance of this technique through a simulation study. Finally, three real-world applications employing count data demonstrate the significance and adaptability of this novel discrete distribution.

Suggested Citation

  • Hend S. Shahen & Mohamed S. Eliwa & Mahmoud El-Morshedy, 2025. "Exploring the Potential of the Kumaraswamy Discrete Half-Logistic Distribution in Data Science Scanning and Decision-Making," Annals of Data Science, Springer, vol. 12(3), pages 1013-1040, June.
  • Handle: RePEc:spr:aodasc:v:12:y:2025:i:3:d:10.1007_s40745-024-00558-9
    DOI: 10.1007/s40745-024-00558-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-024-00558-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-024-00558-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. S. Eliwa & Ziyad Ali Alhussain & M. El-Morshedy, 2020. "Discrete Gompertz-G Family of Distributions for Over- and Under-Dispersed Data with Properties, Estimation, and Applications," Mathematics, MDPI, vol. 8(3), pages 1-26, March.
    2. James M. Tien, 2017. "Internet of Things, Real-Time Decision Making, and Artificial Intelligence," Annals of Data Science, Springer, vol. 4(2), pages 149-178, June.
    3. M. S. Eliwa & M. El-Morshedy, 2022. "A one-parameter discrete distribution for over-dispersed data: statistical and reliability properties with applications," Journal of Applied Statistics, Taylor & Francis Journals, vol. 49(10), pages 2467-2487, July.
    4. Subrata Chakraborty & Dhrubajyoti Chakravarty, 2016. "A new discrete probability distribution with integer support on (−∞, ∞)," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(2), pages 492-505, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed Ibrahim & M. Masoom Ali & Haitham M. Yousof, 2023. "The Discrete Analogue of the Weibull G Family: Properties, Different Applications, Bayesian and Non-Bayesian Estimation Methods," Annals of Data Science, Springer, vol. 10(4), pages 1069-1106, August.
    2. Heba Soltan Mohamed & M. Masoom Ali & Haitham M. Yousof, 2023. "The Lindley Gompertz Model for Estimating the Survival Rates: Properties and Applications in Insurance," Annals of Data Science, Springer, vol. 10(5), pages 1199-1216, October.
    3. Roberto Moro-Visconti & Salvador Cruz Rambaud & Joaquín López Pascual, 2023. "Artificial intelligence-driven scalability and its impact on the sustainability and valuation of traditional firms," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-14, December.
    4. Mansoureh Beheshti Nejad & Seyed Mahmoud Zanjirchi & Seyed Mojtaba Hosseini Bamakan & Negar Jalilian, 2024. "Blockchain Adoption in Operations Management: A Systematic Literature Review of 14 Years of Research," Annals of Data Science, Springer, vol. 11(4), pages 1361-1389, August.
    5. M. Sridharan, 2023. "Generalized Regression Neural Network Model Based Estimation of Global Solar Energy Using Meteorological Parameters," Annals of Data Science, Springer, vol. 10(4), pages 1107-1125, August.
    6. Satti R. G. Reddy & G. P. Saradhi Varma & Rajya Lakshmi Davuluri, 2024. "Deep Neural Network (DNN) Mechanism for Identification of Diseased and Healthy Plant Leaf Images Using Computer Vision," Annals of Data Science, Springer, vol. 11(1), pages 243-272, February.
    7. Astha Modi & Khelan Shah & Shrey Shah & Samir Patel & Manan Shah, 2024. "Sentiment Analysis of Twitter Feeds Using Flask Environment: A Superior Application of Data Analysis," Annals of Data Science, Springer, vol. 11(1), pages 159-180, February.
    8. Amaal Elsayed Mubarak & Ehab Mohamed Almetwally, 2024. "Modelling and Forecasting of Covid-19 Using Periodical ARIMA Models," Annals of Data Science, Springer, vol. 11(4), pages 1483-1502, August.
    9. An Yingjian & La Ping, 2025. "Optimal Individual Selection Algorithm Based on Layer Proximity and Branch Distance Functions," Annals of Data Science, Springer, vol. 12(3), pages 1041-1054, June.
    10. Xueyan Xu & Fusheng Yu & Runjun Wan, 2023. "A Determining Degree-Based Method for Classification Problems with Interval-Valued Attributes," Annals of Data Science, Springer, vol. 10(2), pages 393-413, April.
    11. Qinghua Zheng & Chutong Yang & Haijun Yang & Jianhe Zhou, 2020. "A Fast Exact Algorithm for Deployment of Sensor Nodes for Internet of Things," Information Systems Frontiers, Springer, vol. 22(4), pages 829-842, August.
    12. Prashant Singh & Prashant Verma & Nikhil Singh, 2022. "Offline Signature Verification: An Application of GLCM Features in Machine Learning," Annals of Data Science, Springer, vol. 9(6), pages 1309-1321, December.
    13. Shah Hussain & Muhammad Qasim Khan, 2023. "Student-Performulator: Predicting Students’ Academic Performance at Secondary and Intermediate Level Using Machine Learning," Annals of Data Science, Springer, vol. 10(3), pages 637-655, June.
    14. Elham Shamsinejad & Touraj Banirostam & Mir Mohsen Pedram & Amir Masoud Rahmani, 2025. "A Review of Anonymization Algorithms and Methods in Big Data," Annals of Data Science, Springer, vol. 12(1), pages 253-279, February.
    15. A. R. Sherwani & Q. M. Ali, 2023. "Parametric Classification using Fuzzy Approach for Handling the Problem of Mixed Pixels in Ground Truth Data for a Satellite Image," Annals of Data Science, Springer, vol. 10(6), pages 1459-1472, December.
    16. Hui Zheng & Peng LI & Jing HE, 2022. "A Novel Association Rule Mining Method for Streaming Temporal Data," Annals of Data Science, Springer, vol. 9(4), pages 863-883, August.
    17. Rakhal Das & Anjan Mukherjee & Binod Chandra Tripathy, 2022. "Application of Neutrosophic Similarity Measures in Covid-19," Annals of Data Science, Springer, vol. 9(1), pages 55-70, February.
    18. Sankalp Loomba & Madhavi Dave & Harshal Arolkar & Sachin Sharma, 2024. "Sentiment Analysis using Dictionary-Based Lexicon Approach: Analysis on the Opinion of Indian Community for the Topic of Cryptocurrency," Annals of Data Science, Springer, vol. 11(6), pages 2019-2034, December.
    19. Desmond Chekwube Bartholomew & Chrysogonus Chinagorom Nwaigwe & Ukamaka Cynthia Orumie & Godwin Onyeka Nwafor, 2024. "Intervention Analysis of COVID-19 Vaccination in Nigeria: The Naive Solution Versus Interrupted Time Series," Annals of Data Science, Springer, vol. 11(5), pages 1609-1634, October.
    20. Mahabuba Akhter & Syed Md. Minhaz Hossain & Rizma Sijana Nigar & Srabanti Paul & Khaleque Md. Aashiq Kamal & Anik Sen & Iqbal H. Sarker, 2024. "COVID-19 Fake News Detection using Deep Learning Model," Annals of Data Science, Springer, vol. 11(6), pages 2167-2198, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:12:y:2025:i:3:d:10.1007_s40745-024-00558-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.