IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v346y2025i2d10.1007_s10479-024-06089-z.html
   My bibliography  Save this article

A systematization of global well-posedness in vector optimization

Author

Listed:
  • Matteo Rocca

    (Universitá degli Studi dell’Insubria)

Abstract

In this paper we give a systematization of global well-posedness in vector optimization. We investigate the links among global notions of well-posedness for a vector optimization problem (see e.g. Miglierina et al. in J Optim Theory Appl 126:391–409, 2005 for a detailed explanation of the difference between pointwise and global well-posedness in vector optimization). In particular we compare several notions of global well-posedness referring to efficient solutions, weakly efficient solutions and properly efficient solutions of a vector optimization problem. We also establish scalar characterizations of global vector well-posedness. Finally we study global well-posedness of vector cone-convex functions.

Suggested Citation

  • Matteo Rocca, 2025. "A systematization of global well-posedness in vector optimization," Annals of Operations Research, Springer, vol. 346(2), pages 1653-1669, March.
  • Handle: RePEc:spr:annopr:v:346:y:2025:i:2:d:10.1007_s10479-024-06089-z
    DOI: 10.1007/s10479-024-06089-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-024-06089-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-024-06089-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G. P. Crespi & A. Guerraggio & M. Rocca, 2007. "Well Posedness in Vector Optimization Problems and Vector Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 132(1), pages 213-226, January.
    2. Giovanni P. Crespi & Mansi Dhingra & C. S. Lalitha, 2018. "Pointwise and global well-posedness in set optimization: a direct approach," Annals of Operations Research, Springer, vol. 269(1), pages 149-166, October.
    3. Jacqueline Morgan, 2005. "Approximations and Well-Posedness in Multicriteria Games," Annals of Operations Research, Springer, vol. 137(1), pages 257-268, July.
    4. X. X. Huang, 2000. "Extended Well-Posedness Properties of Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 106(1), pages 165-182, July.
    5. X. X. Huang, 2001. "Extended and strongly extended well-posedness of set-valued optimization problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 53(1), pages 101-116, April.
    6. L. Q. Anh & T. Q. Duy & D. V. Hien, 2020. "Well-posedness for the optimistic counterpart of uncertain vector optimization problems," Annals of Operations Research, Springer, vol. 295(2), pages 517-533, December.
    7. T. Zolezzi, 2001. "Well-Posedness and Optimization under Perturbations," Annals of Operations Research, Springer, vol. 101(1), pages 351-361, January.
    8. E. Miglierina & E. Molho & M. Rocca, 2005. "Well-Posedness and Scalarization in Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 126(2), pages 391-409, August.
    9. E. Miglierina & E. Molho, 2003. "Well-posedness and convexity in vector optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 58(3), pages 375-385, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rocca Matteo & Papalia Melania, 2008. "Well-posedness in vector optimization and scalarization results," Economics and Quantitative Methods qf0807, Department of Economics, University of Insubria.
    2. Y. P. Fang & R. Hu & N. J. Huang, 2007. "Extended B-Well-Posedness and Property (H) for Set-Valued Vector Optimization with Convexity," Journal of Optimization Theory and Applications, Springer, vol. 135(3), pages 445-458, December.
    3. Onetti Alberto & Verma Sameer, 2008. "Licensing and Business Models," Economics and Quantitative Methods qf0806, Department of Economics, University of Insubria.
    4. G. P. Crespi & M. Papalia & M. Rocca, 2009. "Extended Well-Posedness of Quasiconvex Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 141(2), pages 285-297, May.
    5. C. Lalitha & Prashanto Chatterjee, 2014. "Levitin–Polyak well-posedness for constrained quasiconvex vector optimization problems," Journal of Global Optimization, Springer, vol. 59(1), pages 191-205, May.
    6. X. J. Long & J. W. Peng, 2013. "Generalized B-Well-Posedness for Set Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 157(3), pages 612-623, June.
    7. M. Darabi & J. Zafarani, 2015. "Tykhonov Well-Posedness for Quasi-Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 165(2), pages 458-479, May.
    8. Ya-Ping Fang & Rong Hu, 2007. "Estimates of approximate solutions and well-posedness for variational inequalities," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 65(2), pages 281-291, April.
    9. Yi-bin Xiao & Nan-jing Huang, 2011. "Well-posedness for a Class of Variational–Hemivariational Inequalities with Perturbations," Journal of Optimization Theory and Applications, Springer, vol. 151(1), pages 33-51, October.
    10. Meenakshi Gupta & Manjari Srivastava, 2019. "Well-posedness and scalarization in set optimization involving ordering cones with possibly empty interior," Journal of Global Optimization, Springer, vol. 73(2), pages 447-463, February.
    11. Fang, Ya-Ping & Huang, Nan-Jing & Yao, Jen-Chih, 2010. "Well-posedness by perturbations of mixed variational inequalities in Banach spaces," European Journal of Operational Research, Elsevier, vol. 201(3), pages 682-692, March.
    12. Giovanni P. Crespi & Mansi Dhingra & C. S. Lalitha, 2018. "Pointwise and global well-posedness in set optimization: a direct approach," Annals of Operations Research, Springer, vol. 269(1), pages 149-166, October.
    13. San-hua Wang & Nan-jing Huang & Donal O’Regan, 2013. "Well-posedness for generalized quasi-variational inclusion problems and for optimization problems with constraints," Journal of Global Optimization, Springer, vol. 55(1), pages 189-208, January.
    14. Miglierina Enrico & Molho Elena & Rocca Matteo, 2004. "Well-posedness and scalarization in vector optimization," Economics and Quantitative Methods qf0403, Department of Economics, University of Insubria.
    15. Ya-ping Fang & Nan-jing Huang, 2007. "Increasing-along-rays property, vector optimization and well-posedness," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 65(1), pages 99-114, February.
    16. M. Bianchi & G. Kassay & R. Pini, 2009. "Well-posedness for vector equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 70(1), pages 171-182, August.
    17. L. Q. Anh & P. Q. Khanh & D. T. M. Van, 2012. "Well-Posedness Under Relaxed Semicontinuity for Bilevel Equilibrium and Optimization Problems with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 153(1), pages 42-59, April.
    18. Kuntal Som & V. Vetrivel, 2023. "Global well-posedness of set-valued optimization with application to uncertain problems," Journal of Global Optimization, Springer, vol. 85(2), pages 511-539, February.
    19. Giovanni Paolo Crespi & Andreas H. Hamel & Matteo Rocca & Carola Schrage, 2021. "Set Relations via Families of Scalar Functions and Approximate Solutions in Set Optimization," Mathematics of Operations Research, INFORMS, vol. 46(1), pages 361-381, February.
    20. S. Khoshkhabar-amiranloo & E. Khorram, 2015. "Pointwise well-posedness and scalarization in set optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 82(2), pages 195-210, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:346:y:2025:i:2:d:10.1007_s10479-024-06089-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.