IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v261y2018i1d10.1007_s10479-017-2615-z.html
   My bibliography  Save this article

Bounds for parallel machine scheduling with predefined parts of jobs and setup time

Author

Listed:
  • Hyun-Jung Kim

    (Sungkyunkwan University)

Abstract

We examine a parallel machine scheduling problem with setup time in order to minimize the makespan. Each job consists of predefined parts, and the parts of a job can be processed concurrently in different machines. We first provide worst-case bounds of the Longest Processing Time and list schedules for special cases. We also develop a heuristic algorithm for scheduling parts of jobs with family setup time and propose its worst-case performance ratio. The application is the IoT-based smart factory with 3D printers as processing machines.

Suggested Citation

  • Hyun-Jung Kim, 2018. "Bounds for parallel machine scheduling with predefined parts of jobs and setup time," Annals of Operations Research, Springer, vol. 261(1), pages 401-412, February.
  • Handle: RePEc:spr:annopr:v:261:y:2018:i:1:d:10.1007_s10479-017-2615-z
    DOI: 10.1007/s10479-017-2615-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-017-2615-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-017-2615-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Navid Hashemian & Claver Diallo & Béla Vizvári, 2014. "Makespan minimization for parallel machines scheduling with multiple availability constraints," Annals of Operations Research, Springer, vol. 213(1), pages 173-186, February.
    2. Ali Obeid & Stéphane Dauzère-Pérès & Claude Yugma, 2014. "Scheduling job families on non-identical parallel machines with time constraints," Annals of Operations Research, Springer, vol. 213(1), pages 221-234, February.
    3. Clyde L. Monma & Chris N. Potts, 1993. "Analysis of Heuristics for Preemptive Parallel Machine Scheduling with Batch Setup Times," Operations Research, INFORMS, vol. 41(5), pages 981-993, October.
    4. Nait Tahar, Djamel & Yalaoui, Farouk & Chu, Chengbin & Amodeo, Lionel, 2006. "A linear programming approach for identical parallel machine scheduling with job splitting and sequence-dependent setup times," International Journal of Production Economics, Elsevier, vol. 99(1-2), pages 63-73, February.
    5. Allahverdi, Ali & Ng, C.T. & Cheng, T.C.E. & Kovalyov, Mikhail Y., 2008. "A survey of scheduling problems with setup times or costs," European Journal of Operational Research, Elsevier, vol. 187(3), pages 985-1032, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zehetner, Dominik & Gansterer, Margaretha, 2022. "The collaborative batching problem in multi-site additive manufacturing," International Journal of Production Economics, Elsevier, vol. 248(C).
    2. Mecler, Davi & Abu-Marrul, Victor & Martinelli, Rafael & Hoff, Arild, 2022. "Iterated greedy algorithms for a complex parallel machine scheduling problem," European Journal of Operational Research, Elsevier, vol. 300(2), pages 545-560.
    3. Jun-Ho Lee & Hyun-Jung Kim, 2021. "A heuristic algorithm for identical parallel machine scheduling: splitting jobs, sequence-dependent setup times, and limited setup operators," Flexible Services and Manufacturing Journal, Springer, vol. 33(4), pages 992-1026, December.
    4. Bentao Su & Naiming Xie, 2020. "Single workgroup scheduling problem with variable processing personnel," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(2), pages 671-684, June.
    5. Zhe Zhang & Xiaoling Song & Huijun Huang & Yong Yin & Benjamin Lev, 2022. "Scheduling problem in seru production system considering DeJong’s learning effect and job splitting," Annals of Operations Research, Springer, vol. 312(2), pages 1119-1141, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Og[breve]uz, Ceyda & Sibel Salman, F. & Bilgintürk YalçIn, Zehra, 2010. "Order acceptance and scheduling decisions in make-to-order systems," International Journal of Production Economics, Elsevier, vol. 125(1), pages 200-211, May.
    2. Lee, Cheng-Hsiung & Liao, Ching-Jong & Chung, Tsui-Ping, 2014. "Scheduling with multi-attribute setup times on two identical parallel machines," International Journal of Production Economics, Elsevier, vol. 153(C), pages 130-138.
    3. Beezão, Andreza Cristina & Cordeau, Jean-François & Laporte, Gilbert & Yanasse, Horacio Hideki, 2017. "Scheduling identical parallel machines with tooling constraints," European Journal of Operational Research, Elsevier, vol. 257(3), pages 834-844.
    4. Vallada, Eva & Ruiz, Rubén, 2011. "A genetic algorithm for the unrelated parallel machine scheduling problem with sequence dependent setup times," European Journal of Operational Research, Elsevier, vol. 211(3), pages 612-622, June.
    5. Javad Rezaeian & Reza Alizadeh Foroutan & Toraj Mojibi & Yacob Khojasteh, 2023. "Sensitivity Analysis of the Unrelated Parallel Machine Scheduling Problem with Rework Processes and Machine Eligibility Restrictions," SN Operations Research Forum, Springer, vol. 4(3), pages 1-24, September.
    6. Marko Ɖurasević & Domagoj Jakobović, 2019. "Creating dispatching rules by simple ensemble combination," Journal of Heuristics, Springer, vol. 25(6), pages 959-1013, December.
    7. Dongni Li & Xianwen Meng & Miao Li & Yunna Tian, 2016. "An ACO-based intercell scheduling approach for job shop cells with multiple single processing machines and one batch processing machine," Journal of Intelligent Manufacturing, Springer, vol. 27(2), pages 283-296, April.
    8. Byung-Cheon Choi & Myoung-Ju Park, 2015. "A Batch Scheduling Problem with Two Agents," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 32(06), pages 1-19, December.
    9. Bozorgirad, Mir Abbas & Logendran, Rasaratnam, 2013. "Bi-criteria group scheduling in hybrid flowshops," International Journal of Production Economics, Elsevier, vol. 145(2), pages 599-612.
    10. Jianxin Fang & Brenda Cheang & Andrew Lim, 2023. "Problems and Solution Methods of Machine Scheduling in Semiconductor Manufacturing Operations: A Survey," Sustainability, MDPI, vol. 15(17), pages 1-44, August.
    11. Weng, Wei & Fujimura, Shigeru, 2012. "Control methods for dynamic time-based manufacturing under customized product lead times," European Journal of Operational Research, Elsevier, vol. 218(1), pages 86-96.
    12. Omid Shahvari & Rasaratnam Logendran & Madjid Tavana, 2022. "An efficient model-based branch-and-price algorithm for unrelated-parallel machine batching and scheduling problems," Journal of Scheduling, Springer, vol. 25(5), pages 589-621, October.
    13. Rossi, Andrea, 2014. "Flexible job shop scheduling with sequence-dependent setup and transportation times by ant colony with reinforced pheromone relationships," International Journal of Production Economics, Elsevier, vol. 153(C), pages 253-267.
    14. Shi-Sheng Li & Ren-Xia Chen & Qi Feng, 2016. "Scheduling two job families on a single machine with two competitive agents," Journal of Combinatorial Optimization, Springer, vol. 32(3), pages 784-799, October.
    15. A. Dolgui & M. Kovalyov & K. Shchamialiova, 2011. "Multi-product lot-sizing and sequencing on a single imperfect machine," Computational Optimization and Applications, Springer, vol. 50(3), pages 465-482, December.
    16. Jose L. Andrade-Pineda & David Canca & Pedro L. Gonzalez-R & M. Calle, 2020. "Scheduling a dual-resource flexible job shop with makespan and due date-related criteria," Annals of Operations Research, Springer, vol. 291(1), pages 5-35, August.
    17. Löhndorf, Nils & Riel, Manuel & Minner, Stefan, 2014. "Simulation optimization for the stochastic economic lot scheduling problem with sequence-dependent setup times," International Journal of Production Economics, Elsevier, vol. 157(C), pages 170-176.
    18. Shahvari, Omid & Logendran, Rasaratnam, 2016. "Hybrid flow shop batching and scheduling with a bi-criteria objective," International Journal of Production Economics, Elsevier, vol. 179(C), pages 239-258.
    19. Timo Gschwind & Stefan Irnich & Simon Emde & Christian Tilk, 2018. "Branch-Cut-and-Price for the Scheduling Deliveries with Time Windows in a Direct Shipping Network," Working Papers 1805, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    20. Wex, Felix & Schryen, Guido & Feuerriegel, Stefan & Neumann, Dirk, 2014. "Emergency response in natural disaster management: Allocation and scheduling of rescue units," European Journal of Operational Research, Elsevier, vol. 235(3), pages 697-708.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:261:y:2018:i:1:d:10.1007_s10479-017-2615-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.