IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v207y2013i1p261-27810.1007-s10479-012-1079-4.html
   My bibliography  Save this article

Solving the quadratic assignment problem by means of general purpose mixed integer linear programming solvers

Author

Listed:
  • Huizhen Zhang
  • Cesar Beltran-Royo
  • Liang Ma

Abstract

The Quadratic Assignment Problem (QAP) can be solved by linearization, where one formulates the QAP as a mixed integer linear programming (MILP) problem. On the one hand, most of these linearizations are tight, but rarely exploited within a reasonable computing time because of their size. On the other hand, Kaufman and Broeckx formulation (Eur. J. Oper. Res. 2(3):204–211, 1978 ) is the smallest of these linearizations, but very weak. In this paper, we analyze how the Kaufman and Broeckx formulation can be tightened to obtain better QAP-MILP formulations. As shown in our numerical experiments, these tightened formulations remain small but computationally effective to solve the QAP by means of general purpose MILP solvers. Copyright Springer Science+Business Media, LLC 2013

Suggested Citation

  • Huizhen Zhang & Cesar Beltran-Royo & Liang Ma, 2013. "Solving the quadratic assignment problem by means of general purpose mixed integer linear programming solvers," Annals of Operations Research, Springer, vol. 207(1), pages 261-278, August.
  • Handle: RePEc:spr:annopr:v:207:y:2013:i:1:p:261-278:10.1007/s10479-012-1079-4
    DOI: 10.1007/s10479-012-1079-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-012-1079-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-012-1079-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Loiola, Eliane Maria & de Abreu, Nair Maria Maia & Boaventura-Netto, Paulo Oswaldo & Hahn, Peter & Querido, Tania, 2007. "A survey for the quadratic assignment problem," European Journal of Operational Research, Elsevier, vol. 176(2), pages 657-690, January.
    2. Zvi Drezner & Peter Hahn & Éeric Taillard, 2005. "Recent Advances for the Quadratic Assignment Problem with Special Emphasis on Instances that are Difficult for Meta-Heuristic Methods," Annals of Operations Research, Springer, vol. 139(1), pages 65-94, October.
    3. Peter Hahn & Thomas Grant, 1998. "Lower Bounds for the Quadratic Assignment Problem Based upon a Dual Formulation," Operations Research, INFORMS, vol. 46(6), pages 912-922, December.
    4. Eugene L. Lawler, 1963. "The Quadratic Assignment Problem," Management Science, INFORMS, vol. 9(4), pages 586-599, July.
    5. Matteo Fischetti & Michele Monaci & Domenico Salvagnin, 2012. "Three Ideas for the Quadratic Assignment Problem," Operations Research, INFORMS, vol. 60(4), pages 954-964, August.
    6. Adams, Warren P. & Guignard, Monique & Hahn, Peter M. & Hightower, William L., 2007. "A level-2 reformulation-linearization technique bound for the quadratic assignment problem," European Journal of Operational Research, Elsevier, vol. 180(3), pages 983-996, August.
    7. Kaufman, L. & Broeckx, F., 1978. "An algorithm for the quadratic assignment problem using Bender's decomposition," European Journal of Operational Research, Elsevier, vol. 2(3), pages 207-211, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Javad Feizollahi & Igor Averbakh, 2014. "The Robust (Minmax Regret) Quadratic Assignment Problem with Interval Flows," INFORMS Journal on Computing, INFORMS, vol. 26(2), pages 321-335, May.
    2. Zakir Hussain Ahmed, 2016. "Experimental analysis of crossover and mutation operators on the quadratic assignment problem," Annals of Operations Research, Springer, vol. 247(2), pages 833-851, December.
    3. Feizollahi, Mohammad Javad & Feyzollahi, Hadi, 2015. "Robust quadratic assignment problem with budgeted uncertain flows," Operations Research Perspectives, Elsevier, vol. 2(C), pages 114-123.
    4. Silva, Allyson & Coelho, Leandro C. & Darvish, Maryam, 2021. "Quadratic assignment problem variants: A survey and an effective parallel memetic iterated tabu search," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1066-1084.
    5. Prabhjot Kaur & Kalpana Dahiya & Vanita Verma, 2021. "Time-cost trade-off analysis of a priority based assignment problem," OPSEARCH, Springer;Operational Research Society of India, vol. 58(2), pages 448-482, June.
    6. Fatma Zohra Ouaïl & Mohamed El-Amine Chergui, 2018. "A branch-and-cut technique to solve multiobjective integer quadratic programming problems," Annals of Operations Research, Springer, vol. 267(1), pages 431-446, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ketan Date & Rakesh Nagi, 2019. "Level 2 Reformulation Linearization Technique–Based Parallel Algorithms for Solving Large Quadratic Assignment Problems on Graphics Processing Unit Clusters," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 771-789, October.
    2. Pessoa, Artur Alves & Hahn, Peter M. & Guignard, Monique & Zhu, Yi-Rong, 2010. "Algorithms for the generalized quadratic assignment problem combining Lagrangean decomposition and the Reformulation-Linearization Technique," European Journal of Operational Research, Elsevier, vol. 206(1), pages 54-63, October.
    3. Jiming Peng & Tao Zhu & Hezhi Luo & Kim-Chuan Toh, 2015. "Semi-definite programming relaxation of quadratic assignment problems based on nonredundant matrix splitting," Computational Optimization and Applications, Springer, vol. 60(1), pages 171-198, January.
    4. Nyberg, Axel & Westerlund, Tapio, 2012. "A new exact discrete linear reformulation of the quadratic assignment problem," European Journal of Operational Research, Elsevier, vol. 220(2), pages 314-319.
    5. Jingyang Zhou & Peter E.D. Love & Kok Lay Teo & Hanbin Luo, 2017. "An exact penalty function method for optimising QAP formulation in facility layout problem," International Journal of Production Research, Taylor & Francis Journals, vol. 55(10), pages 2913-2929, May.
    6. Feizollahi, Mohammad Javad & Feyzollahi, Hadi, 2015. "Robust quadratic assignment problem with budgeted uncertain flows," Operations Research Perspectives, Elsevier, vol. 2(C), pages 114-123.
    7. Silva, Allyson & Coelho, Leandro C. & Darvish, Maryam, 2021. "Quadratic assignment problem variants: A survey and an effective parallel memetic iterated tabu search," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1066-1084.
    8. Hahn, Peter M. & Kim, Bum-Jin & Stutzle, Thomas & Kanthak, Sebastian & Hightower, William L. & Samra, Harvind & Ding, Zhi & Guignard, Monique, 2008. "The quadratic three-dimensional assignment problem: Exact and approximate solution methods," European Journal of Operational Research, Elsevier, vol. 184(2), pages 416-428, January.
    9. Peter Hahn & J. MacGregor Smith & Yi-Rong Zhu, 2010. "The Multi-Story Space Assignment Problem," Annals of Operations Research, Springer, vol. 179(1), pages 77-103, September.
    10. Alexandre Domingues Gonçalves & Artur Alves Pessoa & Cristiana Bentes & Ricardo Farias & Lúcia Maria de A. Drummond, 2017. "A Graphics Processing Unit Algorithm to Solve the Quadratic Assignment Problem Using Level-2 Reformulation-Linearization Technique," INFORMS Journal on Computing, INFORMS, vol. 29(4), pages 676-687, November.
    11. Peter M. Hahn & Yi-Rong Zhu & Monique Guignard & William L. Hightower & Matthew J. Saltzman, 2012. "A Level-3 Reformulation-Linearization Technique-Based Bound for the Quadratic Assignment Problem," INFORMS Journal on Computing, INFORMS, vol. 24(2), pages 202-209, May.
    12. E. de Klerk & R. Sotirov & U. Truetsch, 2015. "A New Semidefinite Programming Relaxation for the Quadratic Assignment Problem and Its Computational Perspectives," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 378-391, May.
    13. Monique Guignard, 2020. "Strong RLT1 bounds from decomposable Lagrangean relaxation for some quadratic 0–1 optimization problems with linear constraints," Annals of Operations Research, Springer, vol. 286(1), pages 173-200, March.
    14. Loiola, Eliane Maria & de Abreu, Nair Maria Maia & Boaventura-Netto, Paulo Oswaldo & Hahn, Peter & Querido, Tania, 2007. "A survey for the quadratic assignment problem," European Journal of Operational Research, Elsevier, vol. 176(2), pages 657-690, January.
    15. Rostami, Borzou & Malucelli, Federico & Belotti, Pietro & Gualandi, Stefano, 2016. "Lower bounding procedure for the asymmetric quadratic traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 253(3), pages 584-592.
    16. Yunpeng Sun & Ruoya Jia & Asif Razzaq & Qun Bao, 2023. "RETRACTED ARTICLE: Drivers of China’s geographical renewable energy development: evidence from spatial association network structure approaches," Economic Change and Restructuring, Springer, vol. 56(6), pages 4115-4163, December.
    17. Abdelaziz, Fouad Ben & Maddah, Bacel & Flamand, Tülay & Azar, Jimmy, 2024. "Store-Wide space planning balancing impulse and convenience," European Journal of Operational Research, Elsevier, vol. 312(1), pages 211-226.
    18. Hao Hu & Renata Sotirov, 2021. "The linearization problem of a binary quadratic problem and its applications," Annals of Operations Research, Springer, vol. 307(1), pages 229-249, December.
    19. Vittorio Maniezzo, 1999. "Exact and Approximate Nondeterministic Tree-Search Procedures for the Quadratic Assignment Problem," INFORMS Journal on Computing, INFORMS, vol. 11(4), pages 358-369, November.
    20. Krešimir Mihić & Kevin Ryan & Alan Wood, 2018. "Randomized Decomposition Solver with the Quadratic Assignment Problem as a Case Study," INFORMS Journal on Computing, INFORMS, vol. 30(2), pages 295-308, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:207:y:2013:i:1:p:261-278:10.1007/s10479-012-1079-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.