IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v186y2011i1p275-29310.1007-s10479-011-0898-z.html
   My bibliography  Save this article

A simple and effective algorithm for the MaxMin diversity problem

Author

Listed:
  • Daniel Porumbel
  • Jin-Kao Hao
  • Fred Glover

Abstract

The challenge of maximizing the diversity of a collection of points arises in a variety of settings, including the setting of search methods for hard optimization problems. One version of this problem, called the Maximum Diversity Problem (MDP), produces a quadratic binary optimization problem subject to a cardinality constraint, and has been the subject of numerous studies. This study is focused on the Maximum Minimum Diversity Problem (MMDP) but we also introduce a new formulation using MDP as a secondary objective. We propose a fast local search based on separate add and drop operations and on simple tabu mechanisms. Compared to previous local search approaches, the complexity of searching for the best move at each iteration is reduced from quadratic to linear; only certain streamlining calculations might (rarely) require quadratic time per iteration. Furthermore, the strong tabu rules of the drop strategy ensure a powerful diversification capacity. Despite its simplicity, the approach proves superior to most of the more advanced methods from the literature, yielding optimally-proved solutions for many problems in a matter of seconds and even attaining a new lower bound. Copyright Springer Science+Business Media, LLC 2011

Suggested Citation

  • Daniel Porumbel & Jin-Kao Hao & Fred Glover, 2011. "A simple and effective algorithm for the MaxMin diversity problem," Annals of Operations Research, Springer, vol. 186(1), pages 275-293, June.
  • Handle: RePEc:spr:annopr:v:186:y:2011:i:1:p:275-293:10.1007/s10479-011-0898-z
    DOI: 10.1007/s10479-011-0898-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-011-0898-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-011-0898-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duarte, Abraham & Marti, Rafael, 2007. "Tabu search and GRASP for the maximum diversity problem," European Journal of Operational Research, Elsevier, vol. 178(1), pages 71-84, April.
    2. Micael Gallego & Abraham Duarte & Manuel Laguna & Rafael Martí, 2009. "Hybrid heuristics for the maximum diversity problem," Computational Optimization and Applications, Springer, vol. 44(3), pages 411-426, December.
    3. Erkut, Erhan, 1990. "The discrete p-dispersion problem," European Journal of Operational Research, Elsevier, vol. 46(1), pages 48-60, May.
    4. R Aringhieri & R Cordone, 2011. "Comparing local search metaheuristics for the maximum diversity problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(2), pages 266-280, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiawei Song & Yang Wang & Haibo Wang & Qinghua Wu & Abraham P. Punnen, 2019. "An effective multi-wave algorithm for solving the max-mean dispersion problem," Journal of Heuristics, Springer, vol. 25(4), pages 731-752, October.
    2. David Sayah & Stefan Irnich, 2015. "A New Compact Formulation for Discrete p-Dispersion," Working Papers 1517, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    3. Martí, Rafael & Martínez-Gavara, Anna & Pérez-Peló, Sergio & Sánchez-Oro, Jesús, 2022. "A review on discrete diversity and dispersion maximization from an OR perspective," European Journal of Operational Research, Elsevier, vol. 299(3), pages 795-813.
    4. Amirgaliyeva, Zhazira & Mladenović, Nenad & Todosijević, Raca & Urošević, Dragan, 2017. "Solving the maximum min-sum dispersion by alternating formulations of two different problems," European Journal of Operational Research, Elsevier, vol. 260(2), pages 444-459.
    5. Sayah, David & Irnich, Stefan, 2017. "A new compact formulation for the discrete p-dispersion problem," European Journal of Operational Research, Elsevier, vol. 256(1), pages 62-67.
    6. Aringhieri, Roberto & Cordone, Roberto & Grosso, Andrea, 2015. "Construction and improvement algorithms for dispersion problems," European Journal of Operational Research, Elsevier, vol. 242(1), pages 21-33.
    7. Wang, Yang & Wu, Qinghua & Glover, Fred, 2017. "Effective metaheuristic algorithms for the minimum differential dispersion problem," European Journal of Operational Research, Elsevier, vol. 258(3), pages 829-843.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aringhieri, Roberto & Cordone, Roberto & Grosso, Andrea, 2015. "Construction and improvement algorithms for dispersion problems," European Journal of Operational Research, Elsevier, vol. 242(1), pages 21-33.
    2. Martí, Rafael & Martínez-Gavara, Anna & Pérez-Peló, Sergio & Sánchez-Oro, Jesús, 2022. "A review on discrete diversity and dispersion maximization from an OR perspective," European Journal of Operational Research, Elsevier, vol. 299(3), pages 795-813.
    3. Anna Martínez-Gavara & Vicente Campos & Manuel Laguna & Rafael Martí, 2017. "Heuristic solution approaches for the maximum minsum dispersion problem," Journal of Global Optimization, Springer, vol. 67(3), pages 671-686, March.
    4. Lozano, M. & Molina, D. & GarcI´a-MartI´nez, C., 2011. "Iterated greedy for the maximum diversity problem," European Journal of Operational Research, Elsevier, vol. 214(1), pages 31-38, October.
    5. Wu, Qinghua & Hao, Jin-Kao, 2013. "A hybrid metaheuristic method for the Maximum Diversity Problem," European Journal of Operational Research, Elsevier, vol. 231(2), pages 452-464.
    6. Felix Prause & Kai Hoppmann-Baum & Boris Defourny & Thorsten Koch, 2021. "The maximum diversity assortment selection problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(3), pages 521-554, June.
    7. R Aringhieri & R Cordone, 2011. "Comparing local search metaheuristics for the maximum diversity problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(2), pages 266-280, February.
    8. Parreño, Francisco & Álvarez-Valdés, Ramón & Martí, Rafael, 2021. "Measuring diversity. A review and an empirical analysis," European Journal of Operational Research, Elsevier, vol. 289(2), pages 515-532.
    9. Bahram Alidaee & Haibo Wang, 2017. "A note on heuristic approach based on UBQP formulation of the maximum diversity problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(1), pages 102-110, January.
    10. Martí, Rafael & Gallego, Micael & Duarte, Abraham, 2010. "A branch and bound algorithm for the maximum diversity problem," European Journal of Operational Research, Elsevier, vol. 200(1), pages 36-44, January.
    11. Wang, Yang & Wu, Qinghua & Glover, Fred, 2017. "Effective metaheuristic algorithms for the minimum differential dispersion problem," European Journal of Operational Research, Elsevier, vol. 258(3), pages 829-843.
    12. Wu, Qinghua & Hao, Jin-Kao, 2015. "A review on algorithms for maximum clique problems," European Journal of Operational Research, Elsevier, vol. 242(3), pages 693-709.
    13. Jiawei Song & Yang Wang & Haibo Wang & Qinghua Wu & Abraham P. Punnen, 2019. "An effective multi-wave algorithm for solving the max-mean dispersion problem," Journal of Heuristics, Springer, vol. 25(4), pages 731-752, October.
    14. Seyedmohammadhossein Hosseinian & Dalila B. M. M. Fontes & Sergiy Butenko, 2018. "A nonconvex quadratic optimization approach to the maximum edge weight clique problem," Journal of Global Optimization, Springer, vol. 72(2), pages 219-240, October.
    15. Jesús Sánchez-Oro & Manuel Laguna & Rafael Martí & Abraham Duarte, 2016. "Scatter search for the bandpass problem," Journal of Global Optimization, Springer, vol. 66(4), pages 769-790, December.
    16. Geiza Silva & André Leite & Raydonal Ospina & Víctor Leiva & Jorge Figueroa-Zúñiga & Cecilia Castro, 2023. "Biased Random-Key Genetic Algorithm with Local Search Applied to the Maximum Diversity Problem," Mathematics, MDPI, vol. 11(14), pages 1-11, July.
    17. Juan F. Gomez & Anna Martínez-Gavara & Javier Panadero & Angel A. Juan & Rafael Martí, 2024. "A Forward–Backward Simheuristic for the Stochastic Capacitated Dispersion Problem," Mathematics, MDPI, vol. 12(6), pages 1-22, March.
    18. Juan F. Gomez & Javier Panadero & Rafael D. Tordecilla & Juliana Castaneda & Angel A. Juan, 2022. "A Multi-Start Biased-Randomized Algorithm for the Capacitated Dispersion Problem," Mathematics, MDPI, vol. 10(14), pages 1-20, July.
    19. Seyedmohammadhossein Hosseinian & Dalila B. M. M. Fontes & Sergiy Butenko, 2020. "A Lagrangian Bound on the Clique Number and an Exact Algorithm for the Maximum Edge Weight Clique Problem," INFORMS Journal on Computing, INFORMS, vol. 32(3), pages 747-762, July.
    20. Marilène Cherkesly & Claudio Contardo, 2021. "The conditional p-dispersion problem," Journal of Global Optimization, Springer, vol. 81(1), pages 23-83, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:186:y:2011:i:1:p:275-293:10.1007/s10479-011-0898-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.