IDEAS home Printed from https://ideas.repec.org/a/spr/alstar/v108y2024i4d10.1007_s10182-024-00494-2.html
   My bibliography  Save this article

Weighted likelihood methods for robust fitting of wrapped models for p-torus data

Author

Listed:
  • Claudio Agostinelli

    (University of Trento)

  • Luca Greco

    (University Giustino Fortunato)

  • Giovanni Saraceno

    (University of Buffalo)

Abstract

We consider, robust estimation of wrapped models to multivariate circular data that are points on the surface of a p-torus based on the weighted likelihood methodology. Robust model fitting is achieved by a set of weighted likelihood estimating equations, based on the computation of data dependent weights aimed to down-weight anomalous values, such as unexpected directions that do not share the main pattern of the bulk of the data. Weighted likelihood estimating equations with weights evaluated on the torus or obtained after unwrapping the data onto the Euclidean space are proposed and compared. Asymptotic properties and robustness features of the estimators under study have been studied, whereas their finite sample behavior has been investigated by Monte Carlo numerical experiment and real data examples.

Suggested Citation

  • Claudio Agostinelli & Luca Greco & Giovanni Saraceno, 2024. "Weighted likelihood methods for robust fitting of wrapped models for p-torus data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 108(4), pages 853-888, December.
  • Handle: RePEc:spr:alstar:v:108:y:2024:i:4:d:10.1007_s10182-024-00494-2
    DOI: 10.1007/s10182-024-00494-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10182-024-00494-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10182-024-00494-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Claudio Agostinelli & Luca Greco, 2018. "Discussion of “The power of monitoring: how to make the most of a contaminated multivariate sample” by Andrea Cerioli, Marco Riani, Anthony C. Atkinson and Aldo Corbellini," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(4), pages 609-619, December.
    2. M. Ranalli & A. Maruotti, 2020. "Model‐based clustering for noisy longitudinal circular data, with application to animal movement," Environmetrics, John Wiley & Sons, Ltd., vol. 31(2), March.
    3. Agostinelli, Claudio, 2007. "Robust estimation for circular data," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5867-5875, August.
    4. Anahita Nodehi & Mousa Golalizadeh & Mehdi Maadooliat & Claudio Agostinelli, 2021. "Estimation of parameters in multivariate wrapped models for data on a p-torus," Computational Statistics, Springer, vol. 36(1), pages 193-215, March.
    5. Ayanendranath Basu & Bruce Lindsay, 1994. "Minimum disparity estimation for continuous models: Efficiency, distributions and robustness," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 46(4), pages 683-705, December.
    6. Giovanni Saraceno & Claudio Agostinelli & Luca Greco, 2021. "Robust estimation for multivariate wrapped models," METRON, Springer;Sapienza Università di Roma, vol. 79(2), pages 225-240, August.
    7. Park, Chanseok & Basu, Ayanendranath & G. Lindsay, Bruce, 2002. "The residual adjustment function and weighted likelihood: a graphical interpretation of robustness of minimum disparity estimators," Computational Statistics & Data Analysis, Elsevier, vol. 39(1), pages 21-33, March.
    8. Azzalini, Adelchi & Menardi, Giovanna, 2014. "Clustering via Nonparametric Density Estimation: The R Package pdfCluster," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 57(i11).
    9. Ueli Rutishauser & Ian B. Ross & Adam N. Mamelak & Erin M. Schuman, 2010. "Human memory strength is predicted by theta-frequency phase-locking of single neurons," Nature, Nature, vol. 464(7290), pages 903-907, April.
    10. Louis-Paul Rivest & Thierry Duchesne & Aurélien Nicosia & Daniel Fortin, 2016. "A general angular regression model for the analysis of data on animal movement in ecology," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(3), pages 445-463, April.
    11. Claudio Agostinelli & Luca Greco, 2019. "Weighted likelihood estimation of multivariate location and scatter," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 756-784, September.
    12. Luca Greco & Giovanni Saraceno & Claudio Agostinelli, 2021. "Robust Fitting of a Wrapped Normal Model to Multivariate Circular Data and Outlier Detection," Stats, MDPI, vol. 4(2), pages 1-18, June.
    13. Kanti V. Mardia & John T. Kent & Zhengzheng Zhang & Charles C. Taylor & Thomas Hamelryck, 2012. "Mixtures of concentrated multivariate sine distributions with applications to bioinformatics," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(11), pages 2475-2492, August.
    14. Kanti V. Mardia & Charles C. Taylor & Ganesh K. Subramaniam, 2007. "Protein Bioinformatics and Mixtures of Bivariate von Mises Distributions for Angular Data," Biometrics, The International Biometric Society, vol. 63(2), pages 505-512, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luca Greco & Giovanni Saraceno & Claudio Agostinelli, 2021. "Robust Fitting of a Wrapped Normal Model to Multivariate Circular Data and Outlier Detection," Stats, MDPI, vol. 4(2), pages 1-18, June.
    2. Giovanni Saraceno & Claudio Agostinelli & Luca Greco, 2021. "Robust estimation for multivariate wrapped models," METRON, Springer;Sapienza Università di Roma, vol. 79(2), pages 225-240, August.
    3. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.
    4. Greco, Luca & Pacillo, Simona & Maresca, Piera, 2023. "An impartial trimming algorithm for robust circle fitting," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
    5. Luca Greco, 2022. "Robust fitting of mixtures of GLMs by weighted likelihood," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(1), pages 25-48, March.
    6. Anahita Nodehi & Mousa Golalizadeh & Mehdi Maadooliat & Claudio Agostinelli, 2021. "Estimation of parameters in multivariate wrapped models for data on a p-torus," Computational Statistics, Springer, vol. 36(1), pages 193-215, March.
    7. Claudio Agostinelli & Luca Greco, 2018. "Discussion of “The power of monitoring: how to make the most of a contaminated multivariate sample” by Andrea Cerioli, Marco Riani, Anthony C. Atkinson and Aldo Corbellini," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(4), pages 609-619, December.
    8. Suman Majumder & Adhidev Biswas & Tania Roy & Subir Kumar Bhandari & Ayanendranath Basu, 2021. "Statistical inference based on a new weighted likelihood approach," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(1), pages 97-120, January.
    9. Mercedes Fernandez Sau & Daniela Rodriguez, 2018. "Minimum distance method for directional data and outlier detection," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 587-603, September.
    10. Luca Greco & Antonio Lucadamo & Claudio Agostinelli, 2021. "Weighted likelihood latent class linear regression," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(2), pages 711-746, June.
    11. Claudio Agostinelli & Luca Greco, 2019. "Weighted likelihood estimation of multivariate location and scatter," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 756-784, September.
    12. Arun Kumar Kuchibhotla & Somabha Mukherjee & Ayanendranath Basu, 2019. "Statistical inference based on bridge divergences," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(3), pages 627-656, June.
    13. Eva Murphy & Whitney Huang & Julie Bessac & Jiali Wang & Rao Kotamarthi, 2025. "Joint Modeling of Wind Speed and Wind Direction Through a Conditional Approach," Environmetrics, John Wiley & Sons, Ltd., vol. 36(3), April.
    14. Abe, Toshihiro & Miyata, Yoichi & Shiohama, Takayuki, 2023. "Bayesian estimation for mode and anti-mode preserving circular distributions," Econometrics and Statistics, Elsevier, vol. 27(C), pages 136-160.
    15. Guillermo Henry & Daniela Rodriguez, 2009. "Robust nonparametric regression on Riemannian manifolds," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(5), pages 611-628.
    16. Agostinelli, Claudio, 2006. "Notes on Pearson residuals and weighted likelihood estimating equations," Statistics & Probability Letters, Elsevier, vol. 76(17), pages 1930-1934, November.
    17. Lin Zhang & Beibei Sun & Fei Shu & Ying Huang, 2022. "Comparing paper level classifications across different methods and systems: an investigation of Nature publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 7633-7651, December.
    18. Nicosia, Aurélien & Duchesne, Thierry & Rivest, Louis-Paul & Fortin, Daniel, 2017. "A general hidden state random walk model for animal movement," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 76-95.
    19. Mohamad Taghvaee, Vahid & Saboori, Behnaz & Soretz, Susanne & Magazzino, Cosimo & Tatar, Moosa, 2024. "Renewable energy, energy efficiency, and economic complexity in the middle East and North Africa: A panel data analysis," Energy, Elsevier, vol. 311(C).
    20. Runnan Cao & Peter Brunner & Puneeth N. Chakravarthula & Krista L. Wahlstrom & Cory Inman & Elliot H. Smith & Xin Li & Adam N. Mamelak & Nicholas J. Brandmeir & Ueli Rutishauser & Jon T. Willie & Shuo, 2025. "A neuronal code for object representation and memory in the human amygdala and hippocampus," Nature Communications, Nature, vol. 16(1), pages 1-16, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:alstar:v:108:y:2024:i:4:d:10.1007_s10182-024-00494-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.