IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v75y2023i6d10.1007_s10463-023-00873-7.html
   My bibliography  Save this article

Goodness-of-fit tests for the Weibull distribution based on the Laplace transform and Stein’s method

Author

Listed:
  • Bruno Ebner

    (Karlsruhe Institute of Technology (KIT))

  • Adrian Fischer

    (Université libre de Bruxelles (ULB))

  • Norbert Henze

    (Karlsruhe Institute of Technology (KIT))

  • Celeste Mayer

    (Landeskreditbank Baden-Württemberg – Förderbank (L-Bank))

Abstract

We propose novel goodness-of-fit tests for the Weibull distribution with unknown parameters. These tests are based on an alternative characterizing representation of the Laplace transform related to the density approach in the context of Stein’s method. Asymptotic theory of the tests is derived, including the limit null distribution, the behaviour under contiguous alternatives, the validity of the parametric bootstrap procedure, and consistency of the tests against a large class of alternatives. A Monte Carlo simulation study shows the competitiveness of the new procedure. Finally, the procedure is applied to real data examples taken from the materials science.

Suggested Citation

  • Bruno Ebner & Adrian Fischer & Norbert Henze & Celeste Mayer, 2023. "Goodness-of-fit tests for the Weibull distribution based on the Laplace transform and Stein’s method," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(6), pages 1011-1038, December.
  • Handle: RePEc:spr:aistmt:v:75:y:2023:i:6:d:10.1007_s10463-023-00873-7
    DOI: 10.1007/s10463-023-00873-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-023-00873-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-023-00873-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gerrit Lodewicus Grobler & Elzanie Bothma & James Samuel Allison, 2022. "Testing for the Rayleigh Distribution: A New Test with Comparisons to Tests for Exponentiality Based on Transformed Data," Mathematics, MDPI, vol. 10(8), pages 1-17, April.
    2. Norbert Henze, 2002. "Invariant tests for multivariate normality: a critical review," Statistical Papers, Springer, vol. 43(4), pages 467-506, October.
    3. Chen, Xiaohong & White, Halbert, 1998. "Central Limit And Functional Central Limit Theorems For Hilbert-Valued Dependent Heterogeneous Arrays With Applications," Econometric Theory, Cambridge University Press, vol. 14(2), pages 260-284, April.
    4. Steffen Betsch & Bruno Ebner, 2019. "A new characterization of the Gamma distribution and associated goodness-of-fit tests," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(7), pages 779-806, October.
    5. James S. Allison & Steffen Betsch & Bruno Ebner & Jaco Visagie, 2022. "On Testing the Adequacy of the Inverse Gaussian Distribution," Mathematics, MDPI, vol. 10(3), pages 1-18, January.
    6. Alejandra Cabaña & Adolfo Quiroz, 2005. "Using the empirical moment generating function in testing for the Weibull and the type I extreme value distributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 14(2), pages 417-431, December.
    7. Steffen Betsch & Bruno Ebner, 2021. "Fixed point characterizations of continuous univariate probability distributions and their applications," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(1), pages 31-59, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. E. Bothma & J. S. Allison & I. J. H. Visagie, 2022. "New classes of tests for the Weibull distribution using Stein’s method in the presence of random right censoring," Computational Statistics, Springer, vol. 37(4), pages 1751-1770, September.
    2. Steffen Betsch & Bruno Ebner, 2021. "Fixed point characterizations of continuous univariate probability distributions and their applications," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(1), pages 31-59, February.
    3. Sreenivasa Rao Jammalamadaka & Emanuele Taufer & György H. Terdik, 2021. "Asymptotic theory for statistics based on cumulant vectors with applications," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 708-728, June.
    4. Shao, Xiaofeng, 2011. "A bootstrap-assisted spectral test of white noise under unknown dependence," Journal of Econometrics, Elsevier, vol. 162(2), pages 213-224, June.
    5. Escanciano, Juan Carlos & Jacho-Chávez, David T., 2010. "Approximating the critical values of Cramér-von Mises tests in general parametric conditional specifications," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 625-636, March.
    6. Wangli Xu & Yanwen Li & Dawo Song, 2013. "Testing normality in mixed models using a transformation method," Statistical Papers, Springer, vol. 54(1), pages 71-84, February.
    7. Meintanis, S.G. & Milošević, B. & Jiménez–Gamero, M.D., 2024. "Goodness–of–fit tests based on the min–characteristic function," Computational Statistics & Data Analysis, Elsevier, vol. 197(C).
    8. Norbert Henze & María Dolores Jiménez-Gamero, 2019. "A new class of tests for multinormality with i.i.d. and garch data based on the empirical moment generating function," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 499-521, June.
    9. Loperfido, Nicola, 2020. "Some remarks on Koziol’s kurtosis," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
    10. Dante Amengual & Gabriele Fiorentini & Enrique Sentana, 2021. "Multivariate Hermite polynomials and information matrix tests," Working Paper series 21-12, Rimini Centre for Economic Analysis.
    11. Florens, Jean-Pierre & Simoni, Anna, 2012. "Nonparametric estimation of an instrumental regression: A quasi-Bayesian approach based on regularized posterior," Journal of Econometrics, Elsevier, vol. 170(2), pages 458-475.
    12. Norbert Henze & Celeste Mayer, 2020. "More good news on the HKM test for multivariate reflected symmetry about an unknown centre," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 741-770, June.
    13. Tanya Araujo & João Dias & Samuel Eleutério & Francisco Louçã, 2012. "How Fama Went Wrong: Measures of Multivariate Kurtosis for the Identification of the Dynamics of a N-Dimensional Market," Working Papers Department of Economics 2012/21, ISEG - Lisbon School of Economics and Management, Department of Economics, Universidade de Lisboa.
    14. Wanfang Chen & Marc G. Genton, 2023. "Are You All Normal? It Depends!," International Statistical Review, International Statistical Institute, vol. 91(1), pages 114-139, April.
    15. Dante Amengual & Xinyue Bei & Enrique Sentana, 2022. "Normal but skewed?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(7), pages 1295-1313, November.
    16. Marine Carrasco & Barbara Rossi, 2016. "In-Sample Inference and Forecasting in Misspecified Factor Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 313-338, July.
    17. Simos Meintanis & Bojana Milošević & Marko Obradović & Mirjana Veljović, 2024. "Goodness‐of‐fit tests for the multivariate Student‐t distribution based on i.i.d. data, and for GARCH observations," Journal of Time Series Analysis, Wiley Blackwell, vol. 45(2), pages 298-319, March.
    18. Jurgita Arnastauskaitė & Tomas Ruzgas & Mindaugas Bražėnas, 2021. "A New Goodness of Fit Test for Multivariate Normality and Comparative Simulation Study," Mathematics, MDPI, vol. 9(23), pages 1-20, November.
    19. Song, Kyungchul, 2010. "Testing semiparametric conditional moment restrictions using conditional martingale transforms," Journal of Econometrics, Elsevier, vol. 154(1), pages 74-84, January.
    20. Tanya Ara'ujo & Jo~ao Dias & Samuel Eleut'erio & Francisco Louc{c}~a, 2012. "How Fama Went Wrong: Measures of Multivariate Kurtosis for the Identification of the Dynamics of a N-Dimensional Market," Papers 1207.1202, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:75:y:2023:i:6:d:10.1007_s10463-023-00873-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.