IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v72y2020i2d10.1007_s10463-018-0697-2.html
   My bibliography  Save this article

Convergence rates for kernel regression in infinite-dimensional spaces

Author

Listed:
  • Joydeep Chowdhury

    (Indian Statistical Institute)

  • Probal Chaudhuri

    (Indian Statistical Institute)

Abstract

We consider a nonparametric regression setup, where the covariate is a random element in a complete separable metric space, and the parameter of interest associated with the conditional distribution of the response lies in a separable Banach space. We derive the optimum convergence rate for the kernel estimate of the parameter in this setup. The small ball probability in the covariate space plays a critical role in determining the asymptotic variance of kernel estimates. Unlike the case of finite-dimensional covariates, we show that the asymptotic orders of the bias and the variance of the estimate achieving the optimum convergence rate may be different for infinite-dimensional covariates. Also, the bandwidth, which balances the bias and the variance, may lead to an estimate with suboptimal mean square error for infinite-dimensional covariates. We describe a data-driven adaptive choice of the bandwidth and derive the asymptotic behavior of the adaptive estimate.

Suggested Citation

  • Joydeep Chowdhury & Probal Chaudhuri, 2020. "Convergence rates for kernel regression in infinite-dimensional spaces," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(2), pages 471-509, April.
  • Handle: RePEc:spr:aistmt:v:72:y:2020:i:2:d:10.1007_s10463-018-0697-2
    DOI: 10.1007/s10463-018-0697-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-018-0697-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-018-0697-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Holger Dette & Mareen Marchlewski & Jens Wagener, 2012. "Testing for a constant coefficient of variation in nonparametric regression by empirical processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(5), pages 1045-1070, October.
    2. Masry, Elias, 2005. "Nonparametric regression estimation for dependent functional data: asymptotic normality," Stochastic Processes and their Applications, Elsevier, vol. 115(1), pages 155-177, January.
    3. Ferraty, F. & Van Keilegom, I. & Vieu, P., 2012. "Regression when both response and predictor are functions," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 10-28.
    4. Manteiga, Wenceslao Gonzalez & Vieu, Philippe, 2007. "Statistics for Functional Data," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4788-4792, June.
    5. Frédéric Ferraty & Ali Laksaci & Philippe Vieu, 2006. "Estimating Some Characteristics of the Conditional Distribution in Nonparametric Functional Models," Statistical Inference for Stochastic Processes, Springer, vol. 9(1), pages 47-76, May.
    6. Ferraty, F. & Van Keilegom, Ingrid & Vieu, P., 2012. "Regression when both response and predictor are functions," LIDAM Reprints ISBA 2012004, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Kundu, Subrata & Majumdar, Suman & Mukherjee, Kanchan, 2000. "Central Limit Theorems revisited," Statistics & Probability Letters, Elsevier, vol. 47(3), pages 265-275, April.
    8. Chagny, Gaëlle & Roche, Angelina, 2016. "Adaptive estimation in the functional nonparametric regression model," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 105-118.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aneiros, Germán & Horová, Ivana & Hušková, Marie & Vieu, Philippe, 2022. "On functional data analysis and related topics," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    2. Litimein, Ouahiba & Laksaci, Ali & Ait-Hennani, Larbi & Mechab, Boubaker & Rachdi, Mustapha, 2024. "Asymptotic normality of the local linear estimator of the functional expectile regression," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    3. Litimein, Ouahiba & Laksaci, Ali & Mechab, Boubaker & Bouzebda, Salim, 2023. "Local linear estimate of the functional expectile regression," Statistics & Probability Letters, Elsevier, vol. 192(C).
    4. Helander, Sami & Laketa, Petra & Ilmonen, Pauliina & Nagy, Stanislav & Van Bever, Germain & Viitasaari, Lauri, 2022. "Integrated shape-sensitive functional metrics," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    5. Salim Bouzebda & Youssouf Souddi & Fethi Madani, 2024. "Weak Convergence of the Conditional Set-Indexed Empirical Process for Missing at Random Functional Ergodic Data," Mathematics, MDPI, vol. 12(3), pages 1-22, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhiyong Zhou & Zhengyan Lin, 2016. "Asymptotic normality of locally modelled regression estimator for functional data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(1), pages 116-131, March.
    2. Shang, Han Lin, 2013. "Bayesian bandwidth estimation for a nonparametric functional regression model with unknown error density," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 185-198.
    3. Krebs, Johannes T.N., 2019. "The bootstrap in kernel regression for stationary ergodic data when both response and predictor are functions," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 620-639.
    4. Heungsun Hwang & Hye Suk & Yoshio Takane & Jang-Han Lee & Jooseop Lim, 2015. "Generalized Functional Extended Redundancy Analysis," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 101-125, March.
    5. Lydia Kara-Zaitri & Ali Laksaci & Mustapha Rachdi & Philippe Vieu, 2017. "Uniform in bandwidth consistency for various kernel estimators involving functional data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(1), pages 85-107, January.
    6. Ling, Nengxiang & Xu, Qian, 2012. "Asymptotic normality of conditional density estimation in the single index model for functional time series data," Statistics & Probability Letters, Elsevier, vol. 82(12), pages 2235-2243.
    7. Mohamed Chaouch & Naâmane Laïb & Djamal Louani, 2017. "Rate of uniform consistency for a class of mode regression on functional stationary ergodic data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(1), pages 19-47, March.
    8. Rachdi, Mustapha & Laksaci, Ali & Demongeot, Jacques & Abdali, Abdel & Madani, Fethi, 2014. "Theoretical and practical aspects of the quadratic error in the local linear estimation of the conditional density for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 53-68.
    9. Liu, Qiaojing & Zhao, Shoujiang, 2013. "Pointwise and uniform moderate deviations for nonparametric regression function estimator on functional data," Statistics & Probability Letters, Elsevier, vol. 83(5), pages 1372-1381.
    10. Amiri, Aboubacar & Crambes, Christophe & Thiam, Baba, 2014. "Recursive estimation of nonparametric regression with functional covariate," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 154-172.
    11. Geenens, Gery, 2015. "Moments, errors, asymptotic normality and large deviation principle in nonparametric functional regression," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 369-377.
    12. Aneiros, Germán & Cao, Ricardo & Fraiman, Ricardo & Genest, Christian & Vieu, Philippe, 2019. "Recent advances in functional data analysis and high-dimensional statistics," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 3-9.
    13. Laurent Delsol, 2013. "No effect tests in regression on functional variable and some applications to spectrometric studies," Computational Statistics, Springer, vol. 28(4), pages 1775-1811, August.
    14. Zhou, Zhiyang, 2021. "Fast implementation of partial least squares for function-on-function regression," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    15. Bouzebda, Salim & Chaouch, Mohamed, 2022. "Uniform limit theorems for a class of conditional Z-estimators when covariates are functions," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    16. Chaouch, Mohamed, 2019. "Volatility estimation in a nonlinear heteroscedastic functional regression model with martingale difference errors," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 129-148.
    17. Shuzhi Zhu & Peixin Zhao, 2019. "Tests for the linear hypothesis in semi-functional partial linear regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(2), pages 125-148, March.
    18. Andrada Ivanescu & Ana-Maria Staicu & Fabian Scheipl & Sonja Greven, 2015. "Penalized function-on-function regression," Computational Statistics, Springer, vol. 30(2), pages 539-568, June.
    19. Eduardo García‐Portugués & Javier Álvarez‐Liébana & Gonzalo Álvarez‐Pérez & Wenceslao González‐Manteiga, 2021. "A goodness‐of‐fit test for the functional linear model with functional response," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 502-528, June.
    20. Yousri Slaoui, 2020. "Recursive nonparametric regression estimation for dependent strong mixing functional data," Statistical Inference for Stochastic Processes, Springer, vol. 23(3), pages 665-697, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:72:y:2020:i:2:d:10.1007_s10463-018-0697-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.